Estimation of Soil Moisture from Optical and Thermal Remote Sensing: A Review
Abstract
:1. Introduction
2. SM Estimation from Optical and Thermal Remote Sensing
2.1. Single Spectral Analysis Method
2.2. Vegetation Index Method
3. SM Estimations from Thermal Infrared Remote Sensing
3.1. Thermal Inertia Method
3.1.1. The Physical Analytical Model
3.1.2. The Model Based on the Amplitude and Phase Information of LST
3.1.3. Analysis Method Based on Energy Sources
3.1.4. Remote Sensing Methods Combined with Soil Physical Parameters
3.2. Temperature Index Method
3.2.1. Normalized Difference Temperature Index
3.2.2. Crop Water Stress Index
4. SM Estimations from Visible and Thermal Infrared Remote Sensing Data
4.1. The Spatial Information-Based Method
4.1.1. The Triangle Method
4.1.2. The Trapezoid Method
4.2. The Temporal Information-Based Method
5. Current Problems and Discussions
5.1. The Uncertainties of the Input Parameters Used in Soil Moisture Estimation Models
5.2. Soil Moisture under Vegetation
5.3. Uncertain Quantitative Relationships between the Remotely Sensed Indices/Thermal Inertia and SM
5.4. Lack of Surface Data for Validating Remotely Sensed SM
5.5. Uncertainties in the Application of Soil Moisture Estimation Models
6. Conclusions and Perspective
6.1. Combining Optical and Microwave Remote Sensing to Estimate SM
6.2. The Development of Comparable Soil Moisture Indices
6.3. The Measured Surface Data for True Validation
6.4. Improvements to the Soil Moisture Estimation Theory
Acknowledgments
Conflicts of Interest
References
- El Hajj, M.; Baghdadi, N.; Zribi, M.; Belaud, G. Soil moisture retrieval over irrigated grassland using X-band SAR data. Remote Sens. Environ. 2016, 176, 202–218. [Google Scholar] [CrossRef]
- Hirschi, M.; Seneviratne, S.; Scha, C. Seasonal variations in terrestrial water storage for major midlatitude river basins. J. Hydrometeor. 2006, 7, 39–60. [Google Scholar] [CrossRef]
- Hirschi, M.; Viterbo, P.; Seneviratne, S. Basin-scale water balance estimates of terrestrial water storage variations from ECMWF operational forecast analysis. Geophys. Res. Lett. 2006, 33, L21401. [Google Scholar] [CrossRef]
- Liang, W.L.; Hung, F.X.; Chan, M.C.; Lu, T.H. Spatial structure of surface soil water content in a natural forested headwater catchment with a subtropical monsoon climate. J. Hydrol. 2014, 516, 210–221. [Google Scholar] [CrossRef]
- Seneviratne, S.I.; Viterbo, P.; Luthi, D.; Schar, C. Inferring changes in terrestrial water storage using ERA-40 reanalysis data: The Mississippi River basin. J. Clim. 2004, 17, 2039–2057. [Google Scholar] [CrossRef]
- Awe, G.O.; Reichert, J.M.; Timm, L.C.; Wendroth, O.O. Temporal processes of soil water status in a sugarcane field under residue management. Plant Soil. 2015, 387, 395–411. [Google Scholar] [CrossRef]
- Zhang, D.; Li, Z.L.; Tang, R.; Tang, B.H.; Wu, H.; Lu, J.; Shao, K. Validation of a practical normalized soil moisture model with in situ measurements in humid and semi-arid regions. Int. J. Remote Sens. 2015, 36, 5015–5030. [Google Scholar] [CrossRef]
- Lin, H. Earth’s Critical Zone and hydropedology: concepts, characteristics, and advances. Hydrol. Earth Syst. Sci. 2010, 14, 25–45. [Google Scholar] [CrossRef]
- Robinson, D.A.; Campbell, C.S. Soil Moisture Measurement for Ecological and Hydrological Watershed-Scale Observatories: A Review. Vadose Zone J. 2008, 7, 358–389. [Google Scholar] [CrossRef]
- Takagi, K.; Lin, H.S. Temporal dynamics of soil moisture spatial variability in the shale hills critical zone observatory. Vadose Zone J. 2011, 10, 832–842. [Google Scholar] [CrossRef]
- McKee, M.D.; Farach-Carson, C.; Butler, W.T.; Hauschka, P.V.; Nanci, A. Ultrastructura limmuno localization of noncollagenous (osteopontin and osteocalcin) and plasma (albumin and α2HS-glycoprotein) proteins in rat bone. J. Bone Miner. Res. 1993, 8, 485–496. [Google Scholar] [CrossRef] [PubMed]
- Palmer, W.C. Meteorological Drought, Weather Bureau Research PaDer No. 45; U.S. Department of Commerce: Washington, DC, USA, 1965; p. 58.
- Istanbulluoglu, E.; Bras, R.L. On the dynamics of soil moisture, vegetation, and erosion: Implications of climate variability and change. Water Resour. Res. 2006, 42, W06418. [Google Scholar] [CrossRef]
- Pitman, A.J. The evolution of, and revolution in, land surface schemes designed for climate models. Int. J. Climatol. 2003, 23, 479–510. [Google Scholar] [CrossRef]
- Rodriguez-Iturbe, I.; D’Odorico, P.; Porporato, A.; Ridolfi, L. On the spatial and temporal links between vegetation, climate, and soil moisture. Water Resour. Res. 1999, 35, 3709–3722. [Google Scholar] [CrossRef]
- Rodriguez-Iturbe, I.; Porporato, A.; Ridolfi, L.; Isham, V.; Cox, D.R. Probabilistic modeling of water balance at a point: The role of climate, soil, and vegetation. Proc. R. Soc. Lond. Ser. A 1999, 455, 3789–3805. [Google Scholar] [CrossRef]
- Beckmann, P.; Spizzichino, A. The Scattering of Electromagnetic Waves from Rough Surfaces; Pergamon Press: New York, NY, USA, 1963. [Google Scholar]
- Bowers, S.A.; Hanks, R.J. Reflection of radiant energy from soils. Soil Sci. 1965, 2, 130–138. [Google Scholar] [CrossRef]
- Curcio, J.A.; Petty, C.C. The near infrared absorption spectrum of liquid water. J. Opt. Soc. Am. 1951, 5, 302–304. [Google Scholar] [CrossRef]
- Carlson, T.N.; Dodd, J.K.; Benjamin, S.G.; Cooper, J.N. Satellite estimation of the surface energy balance, moisture availability and thermal inertia. J. Appl. Meteor. 1981, 20, 67–87. [Google Scholar] [CrossRef]
- Carlson, T.N. Regional-scale estimates of surface moisture availability and thermal inertia using remote thermal measurements. Remote Sens. Rev. 1986, 1, 197–247. [Google Scholar] [CrossRef]
- Idso, S.B.; Jackson, R.D.; Reginato, R.J. Compensating for environmental variability in the thermal inertia approach to remote sensing of soil moisture. J. Appl. Meteor. 1976, 15, 811–817. [Google Scholar] [CrossRef]
- Kahle, A.B. A simple thermal model of the earth’s surface for geologic mapping by remote sensing. J. Geophys. Res. 1977, 82, 1673–1680. [Google Scholar] [CrossRef]
- Kahle, A.B. Surface emittance, temperature, and thermal inertia derived from Thermal Infrared Multispectral Scanner (TIMS) data for Death Valley, California. Geophysics 1987, 52, 858–874. [Google Scholar] [CrossRef]
- Price, J.C. Thermal inertia mapping: A new view of the earth. J. Geophys. Res. 1977, 82, 2582–2590. [Google Scholar] [CrossRef]
- Watson, K. Regional thermal inertia mapping from an experimental satellite. Geophysics 1982, 47, 1681–1687. [Google Scholar]
- Asner, G. Biophysical and biochemical sources of variability. Remote Sens. Environ. 1998, 76, 173–180. [Google Scholar]
- Carlson, T.N.; Gillies, R.R.; Schmugge, T.J. An interpretation of methodologies for indirect measurement of soil water content. Agric. For. Meteorol. 1995, 77, 191–205. [Google Scholar] [CrossRef]
- Carlson, T.N. An overview of the “Triangle Method” for estimating surface evapotranspiration and soil moisture from satellite imagery. Sensors 2007, 7, 1612–1629. [Google Scholar] [CrossRef]
- Czajkowski, K.; Goward, S.N.; Stadler, S.J.; Waltz, A. Thermal remote sensing of near surface environmental variables: Application over the Oklahoma Mesonet. Prof. Geogr. 2000, 52, 345–357. [Google Scholar] [CrossRef]
- Moran, M.S.; Clarke, T.R.; Inoue, Y.; Vidal, A. Estimating crop water deficit using the relation of between surface air temperature and spectral vegetation index. Remote Sens. Environ. 1994, 49, 246–263. [Google Scholar] [CrossRef]
- Sandholt, I.; Rasmussen, K.; Andersen, J. A simple interpretation of the surface temperature/vegetation index space for assessment of surface moisture status. Remote Sens. Environ. 2002, 79, 213–224. [Google Scholar] [CrossRef]
- Chen, X.Z.; Chen, S.S.; Zhong, R.F.; Su, Y.X.; Liao, J.S.; Li, D.; Han, L.; Lia, Y.; Li, X. A semi-empirical inversion model for assessing surface soil moisture using AMSR-E brightness temperatures. J. Hydrol. 2012, 456, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Ulaby, F.T.; Moore, R.K.; Fung, A.K. Microwave Remote Sensing: Active and Passive; Artech House Inc.: Dedham, MA, USA, 1986. [Google Scholar]
- Fung, A.K.; Li, Z.; Chen, K.S. Backscattering from a Randomly Rough Dieletric Surface. IEEE Trans. Geosci. Remote Sens. 1992, 30, 356–369. [Google Scholar] [CrossRef]
- Fung, A.K. Microwave Scattering and Emission Models and Their Applications; Artech House Inc.: Norwood, MA, USA, 1994. [Google Scholar]
- Chen, K.S.; Tzong-Dar, W.; Leung, T.; Li, Q.; Shi, J.; Fung, A.K. Emission of Rough Surfaces Calculated by the Integral Equation Method with Comparison to Three-Dimensional Moment Method Simulation. IEEE Trans. Geosci. Remote Sens. 2003, 41, 90–101. [Google Scholar] [CrossRef]
- Chen, K.S.; Tzong-Dar, W.; Fung, A.K. A Note on the Multiple Scattering in an IEM Model. IEEE Trans. Geosci. Remote Sens. 2000, 38, 249–256. [Google Scholar] [CrossRef]
- Choudhury, B.J.; Schmugge, T.J.; Chang, A.; Newton, R.W. Effect of Surface Roughness on the Microwave Emission from Soils. J. Geophys. Res. 1979, 84, 5699–5706. [Google Scholar] [CrossRef]
- Wang, J.R.; Choudhury, B.J. Remote Sensing of Soil Moisture Content over Bare Field at 1.4 GHz Frequency. J. Geophys. Res. 1981, 86, 5277–5282. [Google Scholar] [CrossRef]
- Jiancheng, S.; Jiang, L.; Zhang, L.; Chen, K.S. A Parameterized Multifrequency-polarization Surface Emission Model. IEEE Trans. Geoscie. Remote Sens. 2005, 43, 2831–2841. [Google Scholar] [CrossRef]
- Ulaby, F.T.; Sarabandi, K.; Mcdonald, K.; Dobson, M.C. Michigan Microwave Canopy Scattering Model. Int. J. Remote Sens. 1990, 11, 1223–1253. [Google Scholar] [CrossRef]
- Attema, E.P.W.; Ulaby, F.T. Vegetation Modeled as a Water Cloud. Radio Sci. 1978, 13, 357–364. [Google Scholar] [CrossRef]
- Roger, D.; Roo, D.; Du, Y.; Ulaby, F.T.; Dobson, M.C. A Semi-empirical Backscattering Model at L-band and C-band for A Soybean Canopy with Soil Moisture Inversion. IEEE Trans. Geosci. Remote Sens. 2001, 39, 864–872. [Google Scholar]
- Jackson, T.J.; Schmugge, T.J. Vegetation Effects on the Microwave Emission from Soils. Remote Sens. Environ. 1991, 36, 203–210. [Google Scholar] [CrossRef]
- Jackson, T.J.; O’Neill, P.E. Attenuation of Soil Microwave Emission by Corn and Soybeans at 1.4 and 5 GHz. IEEE Trans. Geosci. Remote Sens. 1990, 28, 978–980. [Google Scholar] [CrossRef]
- Zribi, M.; Gorrab, A.; Baghdadi, N.; Lili-Chabaane, Z.; Mougenot, B. Influence of radar frequency on the relationship between bare surface soil moisture vertical profile and radar backscatter. Geosci. Remote Sens. Lett. IEEE 2013, 11, 848–852. [Google Scholar] [CrossRef] [Green Version]
- Baghdadi, N.; Camus, P.; Beaugendre, N.; Issa, O.M.; Zribi, M.; Desprats, J.F.; Rajot, J.L.; Abdallah, C.; Sannier, C. Estimating surface soil moisture from TerraSAR-X data over two small catchments in the Sahelian Part of Western Niger. Remote Sens. 2011, 3, 1266–1283. [Google Scholar] [CrossRef] [Green Version]
- Panciera, R.; Tanase, M.A.; Lowell, K.; Walker, J.P. Evaluation of IEM, Dubois, and Oh radar backscatter models using airborne L-Band SAR. IEEE Trans. Geosci. Remote Sens. 2014, 52, 4966–4979. [Google Scholar] [CrossRef]
- Oh, Y.; Sarabandi, K.; Ulaby, F.T. An empirical model and an inversion technique for radar scattering from bare soil surfaces. IEEE Trans. Geosci. Remote Sens. 1992, 30, 370–381. [Google Scholar] [CrossRef]
- Capodici, F.; Maltese, A.; Ciraolo, G.; La Loggia, G.; D’Urso, G. Coupling two RADAR backscattering models to assess soil roughness and surface water content at farm scale. Hydrol. Sci. J. 2013, 58, 1677–1689. [Google Scholar] [CrossRef]
- Cho, E.; Choi, M.; Wagner, W. An assessment of remotely sensed surface and root zone soil moisture through active and passive sensors in northeast Asia. Remote Sens. Environ. 2015, 160, 166–179. [Google Scholar] [CrossRef]
- Jonard, F.; Weihermüller, L.; Schwank, M.; Jadoon, K.Z.; Vereecken, H.; Lambot, S. Estimation of hydraulic properties of a sandy soil using ground-based active and passive microwave remote sensing. IEEE Trans. Geosci. Remote Sens. 2015, 53, 3095–3109. [Google Scholar] [CrossRef]
- Santi, E.; Paloscia, S.; Pettinato, S.; Notarnicola, C.; Pasolli, L.; Pistocchi, A. Comparison between SAR Soil moisture estimates and hydrological model simulations over the Scrivia Test Site. Remote Sens. 2013, 5, 4961–4976. [Google Scholar] [CrossRef]
- Bogena, H.R.; Huisman, J.A.; Oberdörster, C.; Vereecken, H. Evaluation of a low-cost soil water content sensor for wireless network applications. J. Hydrol. 2007, 344, 32–42. [Google Scholar] [CrossRef]
- Dean, T.J.; Bell, J.P.; Baty, A.J.B. Soil-moisture measurement by an improved capacitance technique Sensor design and performance. J. Hydrol. 1987, 93, 67–78. [Google Scholar] [CrossRef]
- Robinson, D.A.; Jones, S.B.; Wraith, J.M.; Or, D.; Friedman, S.O. A review of advances in dielectric and electrical conductivity measurement in soils using time domain reflectometry. Vadose Zone J. 2003, 2, 444–475. [Google Scholar] [CrossRef]
- Topp, G.C. State of the art of measuring soil water content. Hydrol. Process. 2003, 17, 2993–2996. [Google Scholar] [CrossRef]
- Topp, G.C.; Reynolds, W.D. Time domain reflectometry: A seminal technique for measuring mass and energy in soil. Soil Tillage Res. 1998, 47, 125–132. [Google Scholar] [CrossRef]
- Engman, E.T. Application of microwave remote sensing of soil moisture for water resources and agriculture. Remote Sens. Environ. 1991, 35, 213–226. [Google Scholar] [CrossRef]
- Sonia, I. Investigating soil moisture-climate interactions in a changing climate: A review. Earth-Sci. Rev. 2010, 99, 125–161. [Google Scholar]
- Petropoulos, G.P.; Ireland, G.; Barrett, B. Surface soil moisture retrievals from remote sensing: Current status, products & future trends. Phys. Chem. Earth Parts A/B/C 2015, 83, 36–56. [Google Scholar]
- Filion, R.; Bernier, M.; Paniconi, C.; Chokmani, K.; Melis, M.; Soddu, A.; Lafortune, F.X. Remote sensing for mapping soil moisture and drainage potential in semi-arid regions: Applications to the Campidano plain of Sardinia, Italy. Sci. Total. Environ. 2016, 543, 862–876. [Google Scholar] [CrossRef] [PubMed]
- Anne, N.J.; Abd-Elrahman, A.H.; Lewis, D.B.; Hewitt, N.A. Modeling soil parameters using hyperspectral image reflectance in subtropical coastal wetlands. Int. J. Appl. Earth Obs. Geoinform. 2014, 33, 47–56. [Google Scholar] [CrossRef]
- Minacapilli, M.; Agnese, C.; Blanda, F.; Cammalleri, C.; Ciraolo, G.; Urso, G.D.; Iovino, M.; Pumo, D.; Provenzano, G.; Rallo, G. Estimation of actual evapotranspiration of Mediterranean perennial crops by means of remote sensing based surface energy balance models. Hydrol. Earth Syst. Sci. 2009, 13, 1061–1074. [Google Scholar] [CrossRef] [Green Version]
- Qin, J.; Yang, K.; Lu, N.; Chen, Y.; Zhao, L.; Han, M. Spatial upscaling of in-situ soil moisture measurements based on MODIS-derived apparent thermal inertia. Remote Sens. Environ. 2013, 138, 1–9. [Google Scholar] [CrossRef]
- Pan, M.; Sahoo, A.K.; Wood, E.F. Improving soil moisture retrievals from a physically-based radiative transfer model. Remote Sens. Environ. 2014, 140, 130–140. [Google Scholar] [CrossRef]
- De Jeu, R.A.; Holmes, T.R.; Parinussa, R.M.; Owe, M. A spatially coherent global soil moisture product with improved temporal resolution. J. Hydrol. 2014, 516, 284–296. [Google Scholar] [CrossRef]
- Bartsch, A.; Trofaier, A.M.; Hayman, G.; Sabel, D.; Schlaffer, S.; Clark, D.B. Detection of open water dynamics with ENVISAT ASAR in support of land surface modelling at high latitudes. Biogeosciences 2012, 9, 703–714. [Google Scholar] [CrossRef] [Green Version]
- Panciera, R.; Walker, J.P.; Jackson, T.J.; Gray, D.A.; Tanase, M.A.; Ryu, D.; Monerris, A.; Yardley, H.; Rudiger, C.; Wu, X.; et al. The soil moisture active passive experiments (SMAPEx): Toward soil moisture retrieval from the SMAP mission. IEEE Trans. Geosci. Remote Sens. 2014, 52, 490–507. [Google Scholar] [CrossRef]
- Vereecken, H.; Huisman, J.A.; Pachepsky, Y.; Montzka, C.; van der Kruk, J.; Bogena, H.; Weihermüller, L.; Herbst, M.; Martinez, G.; Vanderborght, J. On the spatio-temporal dynamics of soil moisture at the field scale. J. Hydrol. 2014, 516, 76–96. [Google Scholar] [CrossRef]
- Petropoulos, G.P.; Carlson, T.N. Retrievals of turbulent heat fluxes and soil moisture content by Remote Sensing. In Advances in Environmental Remote Sensing: Sensors, Algorithms, and Applications; Taylor and Francis: Abingdon, UK, 2011; p. 556. [Google Scholar]
- Zhang, D.; Tang, R.; Zhao, W.; Tang, B.; Wu, H.; Shao, K.; Li, Z.L. Surface soil water content estimation from thermal remote sensing based on the temporal variation of land surface temperature. Remote Sens. 2014, 6, 3170–3187. [Google Scholar] [CrossRef] [Green Version]
- Narayan, U.; Lakshmi, V.; Jackson, T.J. High-resolution change estimation of soil moisture using L-band radiometer and radar observations made during the SMEX02 experiments. IEEE Trans. Geosci. Remote 2006, 44, 1545–1554. [Google Scholar] [CrossRef]
- Liu, Y.Y.; Dorigo, W.A.; Parinussa, R.M.; De Jeu, R.A.M.; Wagner, W.; McCabe, M.F.; Evans, J.P.; Van Dijk, A.I.J.M. Trend-preserving blending of passive and active microwave soil moisture retrievals. Remote Sens. Environ. 2012, 123, 280–297. [Google Scholar] [CrossRef]
- Owe, M.; Jeu, R.; Walker, J. A methodology for surface soil moisture and vegetation optical depth retrieval using the microwave polarization difference index. IEEE Trans. Geosci. Remote Sens. 2001, 39, 1643–1654. [Google Scholar] [CrossRef]
- Avila, A.; Pereyra, S.M.; Collino, D.J.; Arguello, J.A. Effects of nitrogen source on the growth and morphogenesis of three micropropagtated potato cultivars. Potato Res. 1994, 37, 161–168. [Google Scholar] [CrossRef]
- Lindsay, S.M.; Tao, N.J.; DeRose, J.A.; Oden, P.I.; Lyubchenko, L.Y. Potentiostatic deposition of DNA for scanning probe microscopy. Biophys. J. 1992, 61, 1570–1584. [Google Scholar] [CrossRef]
- Muller, E.; Décamps, H. Modeling soil moisture-reflectance. Remote Sens. Environ. 2001, 76, 173–180. [Google Scholar] [CrossRef]
- Shih, W.J. Sample Size Re-Estimation in Clinical Trials. In Biopharmaceutical Sequential Statistical Applications; Peace, K.E., Ed.; Marcel Dekker. Inc.: New York, NY, USA, 1992; pp. 285–301. [Google Scholar]
- Sadeghi, M.; Jones, S.B.; Philpot, W.D. A linear physically-based model for remote sensing of soil moisture using short wave infrared bands. Remote Sens. Environ. 2015, 164, 66–76. [Google Scholar] [CrossRef]
- Yang, Y.; Guan, H.; Long, D.; Liu, B.; Qin, G.; Qin, J.; Batelaan, O. Estimation of surface soil moisture from thermal infrared remote sensing using an improved trapezoid method. Remote Sens. 2015, 7, 8250–8270. [Google Scholar] [CrossRef]
- Sadeghi, A.M.; Hancock, G.D.; Waite, W.P.; Scott, H.D.; Rand, J.A. Microwave measurements of moisture distributions in the upper soil profile. Water Resour. Res. 1984, 7, 927–934. [Google Scholar] [CrossRef]
- Wang, L.L.; John, J.Q. Satellite remote sensing applications for surface soil moisture monitoring: A review. Front. Earth Sci. China 2009, 3, 237–247. [Google Scholar] [CrossRef]
- Angstrom, A. The albedo of various surfaces of ground. Geogr. Ann. 1925, 7, 323. [Google Scholar]
- Bowers, S.A.; Smith, S.J. Spectrophotometric determination of soil water content. Soil Sci. Soc. Am. Proc. 1972, 36, 978–980. [Google Scholar] [CrossRef]
- Ishida, T.; Ando, H.; Fukuhara, M. Estimation of complex refractive index of soil particles and its dependence on soil chemical properties. Remote Sens. Environ. 1991, 38, 173–182. [Google Scholar] [CrossRef]
- Stoner, E.R.; Baumgardner, M.F. Physiochemical, Site and Bidirectional Reflectance Factor Characteristics of Uniformly Moist Soils; LARS, Purdue University: Lafayette, CO, USA, 1980. [Google Scholar]
- Jackson, R.D.; Idso, S.B.; Reginato, R.J. Calculation of evaporation rates during the transition from energy-limiting to soil-limiting phases using Albedo data. Water Resour. Res. 1976, 12, 23–26. [Google Scholar] [CrossRef]
- Dalal, H. Simultaneous determination of moisture, organic carbon, and total nitrogen by infrared reflectance spectrometry. Soil Sci. Soc. Am. J. 1986, 50, 120–123. [Google Scholar] [CrossRef]
- Jaquemoud, S.; Baret, F.; Hanocq, J.F. Modeling spectral and bi-directional soil reflectance. Remote Sens. Environ. 1992, 41, 123–132. [Google Scholar] [CrossRef]
- Lobell, D.B.; Asner, G.P. Moisture effects on soil reflectance. Soil Sci. Soc. Am. J. 2002, 66, 722–727. [Google Scholar] [CrossRef]
- Liu, W.; Baret, F.; Gu, X.; Tong, Q.; Zheng, L.; Zhang, B. Relating soil surface moisture to reflectance. Remote Sens. Environ. 2002, 81, 238–246. [Google Scholar]
- Liu, W.; Baret, F.; Gu, X.; Zhang, B.; Tong, Q.; Zheng, L. Evaluation of methods for soil surface moisture estimation from reflectance data. Int. J. Remote Sens. 2003, 24, 2069–2083. [Google Scholar] [CrossRef]
- Whiting, M.L.; Li, L.; Ustin, S.L. Predicting Water Content Using Gaussian Model on Soil Spectra. Remote Sens. Environ. 2004, 89, 535–552. [Google Scholar] [CrossRef]
- Gao, Z.; Xu, X.; Wang, J.; Yang, H.; Huang, W.; Feng, H. A method of estimating soil moisture based on the linear decomposition of mixture pixels. Math. Comput. Modell. 2013, 58, 606–613. [Google Scholar] [CrossRef]
- Liu, W.T.; Ferreira, A. Monitoring Crop Production Regions in the Sao Paulo State of Brazil Using Normalized diVerence Vegetation Index. In Proceedings of the 24th International Symposium on Remote Sensing of Environment, Rio de Janeiro, Brazil, 27–31 May 1991; pp. 447–455.
- Qin, Q.; Ghulam, A.; Zhu, L.; Wang, L.; Li, J.; Nan, P. Evaluation of MODIS derived perpendicular drought index for estimation of surface dryness over northwestern China. Int. J. Remote Sens. 2008, 7, 1983–1995. [Google Scholar] [CrossRef]
- Heim, R.R. A review of twentieth-century drought indices used in the United States. Bull. Am. Meteorol. Soc. 2002, 83, 1149. [Google Scholar]
- Kogan, F.N. Remote sensing of weather impacts on vegetation in non-homogeneous areas. Int. J. Remote Sens. 1990, 11, 1405–1419. [Google Scholar] [CrossRef]
- Kogan, F.N. Application of vegetation index and brightness temperature for drought detection. Adv. Space Res. 1995, 15, 91–100. [Google Scholar] [CrossRef]
- Chen, W.; Xiao, Q.; Sheng, Y. Application of the anomaly vegetation index to monitoring heavy drought in 1992. Remote Sens. Environ. 1994, 9, 106–112. [Google Scholar]
- Gao, B.C. NDWI—A Normalized Difference Water Index for Remote Sensing of Vegetation Liquid Water from Space. Remote Sens. Environ. 1996, 58, 257–266. [Google Scholar] [CrossRef]
- Wang, L.; Qu, J.J. NMDI: A normalized multi-band drought index for monitoring soil and vegetation moisture with satellite remote sensing. Geophys. Res. Lett. 2007, 34, L20405. [Google Scholar] [CrossRef]
- Wang, L.; Qu, J.J.; Hao, X. Forest fire detection using the normalized multi-band drought index (NMDI) with satellite measurements. Agric. For. Meteorol. 2008, 11, 1767–1776. [Google Scholar] [CrossRef]
- Wang, J. A simple method for the estimation of thermal inertia. Geophys. Res. Lett. 2010, 37. [Google Scholar] [CrossRef]
- Ghulam, A.; Qin, Q.; Zhan, Z. Designing of the perpendicular drought index. Environ. Geol. 2006. [Google Scholar] [CrossRef]
- Ghulam, A.; Qin, Q.; Teyip, T. Modified perpendicular drought index (MPDI): A real-time drought monitoring method. ISPRS J. Photogramm. 2007, 2, 150–164. [Google Scholar] [CrossRef]
- Friedl, M.A.; Davis, F.W. Sources of variation in radiometric surface temperature over a tall-grass prairie. Remote Sens. Environ. 1994, 48, 1–17. [Google Scholar] [CrossRef]
- Schmugge, T.J. Remote sensing of surface soil moisture. J. Appl. Meteor. 1978, 17, 1549–1557. [Google Scholar] [CrossRef]
- Price, J.C. On the analysis of thermal infrared imagery: The limited utility of apparent thermal inertia. Remote Sens. Environ. 1985, 18, 59–73. [Google Scholar] [CrossRef]
- Engman, E.T. Soil Moisture Needs in Earth Sciences. In Proceedings of the International Geoscience and Remote Sensing Symposium (IGARSS), Houston, TX, USA, 26–29 May 1992; pp. 477–479.
- Engman, E.T.; Chauhan, N. Status of microwave soil moisture measurements with remote sensing. Remote Sens. Environ. 1995, 51, 189–198. [Google Scholar] [CrossRef]
- Stephen, S. Determining soil moisture and sediment availability at White Sands Dune Field, New Mexico, from apparent thermal inertia data. J. Geophys. Res. 2010, 115. [Google Scholar] [CrossRef]
- Verstraeten, W.W.; Veroustraete, F.; van der Sande, C.J.; Grootaersn, I.; Feyen, J. Soil moisture retrieval using thermal inertia, determined with visible and thermal space-borne data, validated for European forests. Remote Sens. Environ. 2006, 101, 299–314. [Google Scholar] [CrossRef]
- Frank, V.; Qin, L.; Willem, W.; Xi, C.; Patrick, W. Soil moisture content retrieval based on apparent thermal inertia for Xinjiang province in China. Int. J. Remote Sens. 2012, 33, 3870–3885. [Google Scholar]
- Chang, T.Y.; Wang, Y.C.; Feng, C.C.; Ziegler, A.D. Estimation of root zone soil moisture using apparent thermal inertia with MODIS imagery over a tropical catchment in northern Thailand. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2012, 5, 752–761. [Google Scholar] [CrossRef]
- Chen, J.; Wang, L.; Li, X.; Wang, X. Spring Drought Monitoring in Hebei Plain Based on a Modified Apparent Thermal Inertia Method. In Proceedings of the Seventh International Symposium on Multispectral Image Processing and Pattern Recognition (MIPPR2011), Guilin, China, 4 November 2011.
- Xue, Y.; Cracknell, A.P. Advanced thermal inertia modelling. Int. J. Remote Sens. 1995, 16, 431–446. [Google Scholar] [CrossRef]
- Cai, G.; Xue, Y.; Hu, Y.; Wang, Y.; Guo, J.; Luo, Y.; Wu, C.; Zhong, S.; Qi, S. Soil moisture retrieval from MODIS data in Northern China Plain using thermal inertia model. Int. J. Remote Sens. 2007, 16, 3567–3581. [Google Scholar] [CrossRef]
- Xue, Y.; Cracknell, A.P. Operational bi-angle approach to retrieve the Earth surface albedo from AVHRR data in the visible band. Int. J. Remote Sens. 1995, 16, 417–429. [Google Scholar] [CrossRef]
- Sobrino, J.; El Kharraz, M. Combining afternoon and morning NOAA satellites for thermal inertia estimation 1. Algorithm and its testing with Hydrologic Athmospheric Pilot Experiment-Sahel data. J. Geophys. Res. 1999, 104, 9446–9453. [Google Scholar]
- Sobrino, J.; El Kharraz, M. Combining afternoon and morning NOAA satellites for thermal inertia estimation 2. Methodology and application. J. Geophys. Res. 1999, 104, 9455–9465. [Google Scholar] [CrossRef]
- Matsushima, D.; Reiji, K.; Masato, S. Soil Moisture Estimation Using Thermal Inertia: Potential and Sensitivity to Data Conditions. J. Hydrometeor. 2012, 13, 638–648. [Google Scholar] [CrossRef]
- Robock, A.; Vinnikov, K.; Srinivasan, G.; Entin, J.K.; Hollinger, S.E.; Speranskaya, N.A.; Liu, S.; Namkhai, A. The global soil moisture data bank. Bull. Am. Meteorol. Soc. 2000, 6, 1281–1299. [Google Scholar] [CrossRef]
- Verhoef, A. Remote estimation of thermal inertia and soil heat flux for bare soil. Agric. For. Meteor. 2004, 123, 221–236. [Google Scholar] [CrossRef]
- Verhoef, E.T.; Nijkamp, P.; Rietveld, P. Second-best congestion pricing: The case of an untolled alternative. J. Urban Econ. 1996, 3, 279–302. [Google Scholar] [CrossRef]
- Verhoef, A.; Diaz-Espejo, A.; Knight, J.R. Adsorption of water vapor by bare soil in an olive grove in southern Spain. J. Hydrometerol. 2006, 7, 1011–1027. [Google Scholar] [CrossRef]
- Zhang, R.; Sun, X.; Zhu, Z.; Su, H.; Tang, X. A remote sensing model for monitoring soil evaporation based on differential thermal inertia and its validation. Sci. China Ser. D Earth Sci. 2003, 4, 342–355. [Google Scholar]
- Lu, S.; Ju, Z.; Ren, T.; Horton, R. A general approach to estimate soil water content from thermal inertia. Agric. Forest Meteorol. 2009, 149, 1693–1698. [Google Scholar] [CrossRef]
- Minacapilli, M.; Iovino, M.; Blanda, F. High resolution remote estimation of soil surface water content by a thermal inertia approach. J. Hydrol. 2009, 379, 229–238. [Google Scholar] [CrossRef]
- Minacapilli, M. Thermal Inertia Modeling for Soil Surface Water Content estimation: A Laboratory Experiment. Soil Phys. 2012, 76, 92–100. [Google Scholar] [CrossRef]
- McVicar, T.R.; Jupp, D.B.; Yang, X. Linking Regional Water Balance Models with Remote Sensing. In Proceedings of the 13th Asian Conference on Remote Sensing, Ulaanbaatar, Mongolia, 7–11 October 1992.
- Zhang, C.; Ni, S.; Liu, Z. Review on Methods of Monitoring Soil Moisture Based on Remote Sensing. J. Agric. Mech. Res. 2006, 6, 58–61. [Google Scholar]
- Bindlish, R.; Jackson, T.J.; Gasiewski, A.; Stankov, B.; Klein, M.; Cosh, M.H.; Mladenova, I.; Watts, C.; Vivoni, E.; Lakshmi, V.; et al. Aircraft based soil moisture retrievals under mixed vegetation and topographic conditions. Remote Sens. Environ. 2008, 112, 375–390. [Google Scholar] [CrossRef]
- Yan, F.; Qin, Z.; Li, M. Progress in soil moisture estimation from remote sensing data for agricultural drought monitoring. Remote Sens. 2006, 6, 114–121. [Google Scholar]
- Moran, M.S.; Jackson, R.D.; Slater, P.N.; Teillet, P.M. Evaluation of simplified procedures for retrieval of land surface reflectance factors from satellite sensor output. Remote Sens. Environ. 1992, 41, 169–184. [Google Scholar] [CrossRef]
- Lambin, E.F.; Ehrlich, D. The surface temperature—Vegetation index space for land cover and land-cover change analysis. Int. J. Remote Sens. 1996, 17, 463–487. [Google Scholar] [CrossRef]
- Han, Y.; Wang, Y.Q.; Zhao, Y.S. Estimating Soil Moisture Conditions of the Greater Changbai Mountains by Land Surface Temperature and NDVI. IEEE Trans. Geosci. Remote 2010, 48, 2509–2515. [Google Scholar]
- Goetz, S.J. Multisensor analysis of NDVI, surface temperature and biophysical variables at a mixed grassland site. Int. J. Remote Sens. 1997, 18, 71–94. [Google Scholar] [CrossRef]
- Gillies, R.R.; Carlson, T.N.; Gui, J.; Kustas, W.P.; Humes, K.S. A verification of the ‘triangle’ method for obtaining surface soil water content and energy fluxes from remote measurements of the Normalized Difference Vegetation Index (NDVI) and surface radiant temperature. Int. J. Remote Sens. 1997, 18, 3145–3166. [Google Scholar] [CrossRef]
- Clarke, T.R. An empirical approach for detecting crop water stress using multispectral airborne sensors. HortTechnology 1997, 7, 9–16. [Google Scholar]
- Carlson, T.N.; Gillies, R.R.; Perry, E.M. A method to make use of thermal infrared temperature and NDVI measurements to infer surface soil water content and fractional vegetation cover. Remote Sens. Rev. 1994, 9, 161–173. [Google Scholar] [CrossRef]
- Becker, F.; Li, Z.L. Temperature independent spectral indices in thermal infrared bands. Remote Sens. Environ. 1981, 32, 17–33. [Google Scholar] [CrossRef]
- Nemani, R.; Running, S. Land cover characterization using multi-temporal red, near-IR and thermal-IR data from NOAA/AVHRR. Ecol. Appl. 1997, 1, 79–90. [Google Scholar] [CrossRef]
- Nemani, R.; Pierce, L.; Running, S.; Goward, S. Developing satellite-derived estimates of surface moisture status. J. Appl. Meteor. 1993, 3, 548–557. [Google Scholar] [CrossRef]
- Nemani, R.R.; Running, S.W. Estimation of regional surface resistance to evapotranspiration from NDVI and thermal IR AVHRR data. J. Appl. Meteor. 1989, 28, 276–284. [Google Scholar] [CrossRef]
- Smith, R.C.G.; Choudhury, B.J. Analysis of normalized difference and surface temperature observations over southeastern Australia. Int. J. Remote Sens. 1991, 10, 2021–2044. [Google Scholar] [CrossRef]
- Murray, T.; Verhoef, A. Moving towards a more mechanistic approach in the determination of soil heat flux from remote measurements: I. A universal approach to calculate thermal inertia. Agric. For. Meteor. 2007, 147, 80–87. [Google Scholar] [CrossRef]
- Murray, T.; Verhoef, A. Moving towards a more mechanistic approach in the determination of soil heat flux from remote measurements: II. Diurnal shape of soil heat flux. Agric. For. Meteor. 2007, 147, 88–97. [Google Scholar] [CrossRef]
- Ochsner, T.E.; Horton, R.; Ren, T. A new perspective on soil thermal properties. Bull. Am. Meteorol. Soc. 2001, 6, 1641–1647. [Google Scholar] [CrossRef]
- Price, J.C. Using spatial context in satellite data to infer regional scale evapotranspiration. IEEE Trans. Geosci. Remote 1990, 28, 940–948. [Google Scholar] [CrossRef]
- Zhang, D.; Tang, R.; Tang, B.H. A Simple Method for Soil Moisture Determination From LST–VI Feature Space Using Nonlinear Interpolation Based on Thermal Infrared Remotely Sensed Data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 638–648. [Google Scholar] [CrossRef]
- Mallick, K.; Bhattacharya, B.K.; Patel, N.K. Estimating volumetric surface moisture content for cropped soils using a soil wetness index based on surface temperature and NDVI. Agric. For. Meteor. 2009, 149, 1327–1342. [Google Scholar] [CrossRef]
- Jackson, R.D.; Pinter, P.J. Detection of Water Stress in Wheat by Measurement of Reflected Solar and Emitted Thermal IR Radiation. In Spectral Signatures of Objects in Remote Sensing; Institute National de la Recherche Agronomique: Versailles, France, 1981; pp. 399–406. [Google Scholar]
- Leng, P.; Song, X.; Li, Z.-L. Bare surface soil moisture retrieval from the synergistic use of optical and thermal infrared data. Int. J. Remote Sens. 2014, 3, 988–1003. [Google Scholar] [CrossRef]
- Zhao, W.; Li, Z.-L.; Wu, H. Determination of bare surface soil moisture from combined temporal evolution of land surface temperature and net surface shortwave radiation. Hydrol. Process. 2013, 27, 2825–2833. [Google Scholar] [CrossRef]
- Zhao, W.; Li, Z.-L. Sensitivity study of soil moisture on the temporal evolution of surface temperature over bare surfaces. Int. J. Remote Sens. 2013, 34, 3314–3331. [Google Scholar] [CrossRef]
- Song, X.; Leng, P.; Li, X. Retrieval of daily evolution of soil moisture from satellite-derived land surface temperature and net surface shortwave radiation. Int. J. Remote Sens. 2013, 34, 3289–3298. [Google Scholar] [CrossRef]
- Akbar, R.; Moghaddam, M. A combined active-passive soil moisture estimation algorithm with adaptive regularization in support of SMAP. IEEE Trans. Geosci. Remote 2015, 6, 3312–3324. [Google Scholar] [CrossRef]
- McNairn, H.; Jackson, T.J.; Wiseman, G.; Bélair, S. The Soil Moisture Active Passive Validation Experiment 2012 (SMAPVEX12): Prelaunch calibration and validation of the SMAP soil moisture algorithms. IEEE Trans. Geosci. Remote 2015, 5, 2784–2801. [Google Scholar] [CrossRef]
- Entekhabi, D.; Yueh, S.; O’Neill, P.E.; Wood, F.; Njoku, G.; Entin, K.; Kellogg, H. The NASA Soil Moisture Active Passive (SMAP) Mission Status and Early Results. In Proceedings of the EGU General Assembly Conference Abstracts, San Francisco, CA, USA, 14–18 December 2015; p. 5973.
- Kimball, J.S.; Jones, L.A.; Glassy, J.; Stavros, E.N.; Madani, N.; Reichle, R.H.; Jackson, T.; Colliander, A. Soil Moisture Active Passive (SMAP) Project Calibration and Validation for the L4_C Beta-Release Data Product; NASA: Washington, DC, USA, 2015; Volume 104606.
- Al-Yaari, A.; Wigneron, J.P.; Ducharne, A.; Kerr, Y.H.; Wagner, W.; De Lannoy, G.; Mialon, A. Global-scale comparison of passive (SMOS) and active (ASCAT) satellite based microwave soil moisture retrievals with soil moisture simulations (MERRA-Land). Remote Sens. Environ. 2014, 152, 614–626. [Google Scholar] [CrossRef] [Green Version]
- Vittucci, C.; Ferrazzoli, P.; Kerr, Y.; Richaume, P.; Guerriero, L.; Rahmoune, R.; Laurin, G.V. SMOS retrieval over forests: Exploitation of optical depth and tests of soil moisture estimates. Remote Sens. Environ. 2016, 180, 115–127. [Google Scholar] [CrossRef]
- Molero, B.; Merlin, O.; Malbéteau, Y.; al Bitar, A.; Cabot, F.; Stefan, V.; Kerr, Y.; Bacon, S.; Cosh, M.H.; Bindlish, R.; et al. SMOS disaggregated soil moisture product at 1 km resolution: Processor overview and first validation results. Remote Sens. Environ. 2016, 180, 361–376. [Google Scholar] [CrossRef]
- Van, R.; Parinussa, R.M.; Renzullo, L.J.; van Dijk, A.I.J.M.; Su, C.-H.; de Jeu, R.A.M. SMOS soil moisture retrievals using the land parameter retrieval model: Evaluation over the Murrumbidgee Catchment, southeast Australia. Remote Sens. Environ. 2015, 163, 70–79. [Google Scholar]
- Louvet, S.; Pellarin, T.; Bitar, A.; Cappelaere, B.; Galle, S.; Grippa, M.; Gruhier, C.; Kerr, Y.; Lebel, T.; Mialon, A.; et al. SMOS soil moisture product evaluation over West-Africa from local to regional scale. Remote Sens. Environ. 2015, 156, 383–394. [Google Scholar] [CrossRef]
- Kerr, Y.H.; Waldteufel, P.; Richaume, P.; Wigneron, J.P. The SMOS soil moisture retrieval algorithm. IEEE Trans. Geosci. Remote. 2012, 5, 1384–1403. [Google Scholar] [CrossRef]
- Coopersmith, E.J.; Cosh, M.H.; Bindlish, R.; Bell, J. Comparing AMSR-E soil moisture estimates to the extended record of the US Climate Reference Network (USCRN). Adv. Water Resour. 2015, 85, 79–85. [Google Scholar] [CrossRef]
- Santi, E.; Paloscia, S.; Pettinato, S.; Brocca, L. Robust Assessment of an Operational Algorithm for the Retrieval of Soil Moisture from AMSR-E Data in Central Italy. In Proceedings of the 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Milan, Italy, 26–31 July 2015; pp. 1288–1291.
- Du, J.; Kimball, J.S.; Jones, L.A. Passive Microwave Remote Sensing of Soil Moisture Based on Dynamic Vegetation Scattering Properties for AMSR-E. IEEE Trans. Geosci. Remote 2016, 1, 597–608. [Google Scholar] [CrossRef]
- Malbéteau, Y.; Merlin, O.; Molero, B.; Rüdiger, C.; Bacon, S. Dispatch as a tool to evaluate coarse-scale remotely sensed soil moisture using localized in situ measurements: Application to SMOS and AMSR-E data in Southeastern Australia. Int. J. Appl. Earth Obs. 2016, 45, 221–234. [Google Scholar] [CrossRef]
- Njoku, E.G.; Jackson, T.J.; Lakshmi, V.; Chan, T.K. Soil moisture retrieval from AMSR-E. IEEE Trans. Geosci. Remote 2003, 2, 215–229. [Google Scholar] [CrossRef]
- Hornáček, M.; Wagner, W.; Sabel, D.; Truong, H. Potential for high resolution systematic global surface soil moisture retrieval via change detection using Sentinel-1. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2012, 5, 1303–1311. [Google Scholar] [CrossRef]
- Paloscia, S.; Pettinato, S.; Santi, E.; Notarnicola, C.; Pasolli, L.; Reppucci, A. Soil moisture mapping using Sentinel-1 images: Algorithm and preliminary validation. Remote Sens. Environ. 2013, 134, 234–248. [Google Scholar] [CrossRef]
- Pierdicca, N.; Pulvirenti, L.; Pace, G. A prototype software package to retrieve soil moisture from Sentinel-1 data by using a bayesian multitemporal algorithm. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 153–166. [Google Scholar] [CrossRef]
- Jackson, T.J.; Chen, D.; Cosh, M.; Li, F.; Anderson, M.; Walthall, C.; Doriaswamy, P.; Hunt, E.R. Vegetation water content mapping using Landsat data derived normalized difference water index for corn and soybeans. Remote Sens. Environ. 2004, 4, 475–482. [Google Scholar] [CrossRef]
- Chuvieco, E.; Riano, D.; Aguado, I.; Cocero, D. Estimation of fuel moisture content from multitemporal analysis of Landsat Thematic Mapper reflectance data: Applications in fire danger assessment. Int. J. Remote Sens. 2002, 11, 2145–2162. [Google Scholar] [CrossRef]
- Chen, D.; Huang, J.; Jackson, T.J. Vegetation water content estimation for corn and soybeans using spectral indices derived from MODIS near-and short-wave infrared bands. Remote Sens. Environ. 2005, 2, 225–236. [Google Scholar] [CrossRef]
- Zarco-Tejada, P.J.; Rueda, C.A.; Ustin, S.L. Water content estimation in vegetation with MODIS reflectance data and model inversion methods. Remote Sens. Environ. 2003, 1, 109–124. [Google Scholar] [CrossRef]
- Cracknell, A.; Xue, Y. Thermal inertia from space—A tutorial review. Int. J. Remote Sens. 1996, 19, 431–461. [Google Scholar] [CrossRef]
- Göttsche, F.M.; Olesen, F.S. Modeling of diurnal cycles of brightness temperature extracted from METEOSAT data. Remote Sens. Environ. 2001, 76, 337–348. [Google Scholar] [CrossRef]
- Pellarin, T.; Louvet, S.; Gruhier, C. A simple and effective method for correcting soil moisture and precipitation estimates using AMSR-E measurements. Remote Sens. Environ. 2013, 136, 28–36. [Google Scholar] [CrossRef]
- Bosch, D.D.; Lakshmi, V.; Jackson, T.J.; Choid, M.; Jacobs, J.M. Large scale measurements of soil moisture for validation of remotely sensed data: Georgia soil moisture experiment of 2003. J. Hydrol. 2006, 323, 120–137. [Google Scholar] [CrossRef]
- Simon, S.; Sandholt, I. Combining the triangle method with thermal inertia to estimate regional evapotranspiration—Applied to MSG-SEVIRI data in the Senegal River basin. Remote Sens. Environ. 2008, 112, 1242–1255. [Google Scholar]
- Carlson, T.N.; Ripley, D.A. On the relation between NDVI, fractional vegetation cover, and leaf area index. Remote Sens. Environ. 1997, 62, 241–252. [Google Scholar] [CrossRef]
- Stisen, S.; Sandholt, I.; Fensholt, R. Meteosat Second Generation Data for Assessment of Surface Moisture Status. In Proceedings of the Second MSG RAO Workshop, Salzburg, Austria, 9–10 September 2004.
- Carlson, T.N.; Rose, F.G.; Perry, E.M. Regional-Scale Estimates of Surface Moisture Availability from GOES Infrared Satellite Measurements. Agron. J. 1984, 76, 972–978. [Google Scholar] [CrossRef]
- Rong, T.; Li, Z.-L.; Tang, B. An application of the Ts-VI triangle method with enhanced edges determination for evapotranspiration estimation from MODIS data in arid and semi-arid regions: Implementation and validation. Remote Sens. Environ. 2010, 114, 540–551. [Google Scholar]
- Di, L.; Vijay, P.S. A Two-source Trapezoid Model for Evapotranspiration (TTME) from satellite imagery. Remote Sens. Environ. 2012, 121, 370–388. [Google Scholar]
- Anderson, C. A Two-Source Time-Integrated Model for Estimating Surface Fluxes Using Thermal Infrared Remote Sensing. Remote Sens. Environ. 1997, 60, 195–216. [Google Scholar] [CrossRef]
- Antonino, M.; Fulvio, C.; Chiara, C.; Giuseppe, C.; Goffredo, L. Critical Analysis of the Thermal Inertia Approach to Map Soil Water Content under Sparse Vegetation and Changeable Sky Conditions. In Proceedings of the SPIE 8531, Remote Sensing for Agriculture, Ecosystems, and Hydrology XIV, Edinburgh, UK, 23 October 2012.
- Bartholic, J.E.; Namken, L.N.; Wiegand, C.L. Aerial thermal scanner to determine temperatures of soils and crop canopies differing in water stress. Agron. J. 1972, 64, 603–608. [Google Scholar] [CrossRef]
- Goward, S.N.; Xue, Y.; Czajkowski, K.P. Evaluating land surface moisture conditions from the remotely sensed temperature/vegetation index measurements: An exploration with the simplified simple biosphere model. Remote Sens. Environ. 2002, 2, 225–242. [Google Scholar] [CrossRef]
- Jing, X.; Guo, T. Combining vegetation index and remotely sensed temperature for estimation of soil moisture in China. Int. J. Remote Sens. 2006, 27, 2071–2075. [Google Scholar]
- McVicar, T.R.; Jupp, D.L.B. The current and potential operational uses of remote sensing to aid decisions on drought exceptional circumstances in Australia: A review. Agric. Syst. 1998, 57, 399–478. [Google Scholar] [CrossRef]
- Sun, L.; Sun, R. Monitoring surface soil moisture status based on remotely sensed surface temperature and vegetation index information. Agric. For. Meteor. 2012, 166–167, 175–187. [Google Scholar] [CrossRef]
- Wan, Z.; Wang, P.; Li, X. Using MODIS Land Surface Temperature and Normalized Difference Vegetation Index Products for monitoring drought in the southern Great Plains, USA. Int. J. Remote Sens. 2004, 25, 61–72. [Google Scholar] [CrossRef]
- Wetzel, P.J.; Atlas, D.; Woodward, R.H. Determining soil moisture from geosynchronous satellite infrared data: A feasibility study. J. Clim. Appl. Meteor. 1984, 23, 375–391. [Google Scholar] [CrossRef]
- Zhang, R.H.; Tian, J.; Su, H.B.; Sun, X.M.; Chen, S.H.; Xia, J. Two improvements of an operational two-layer model for terrestrial surface heat flux retrieval. Sensors 2008, 8, 6165–6187. [Google Scholar] [CrossRef]
- Li, Z.-L.; Tang, R.L. A Review of Current Methodologies for Regional Evapotranspiration Estimation from Remotely Sensed Data. Sensors 2009, 9, 3801–3853. [Google Scholar] [CrossRef] [PubMed]
- Zhao, W.; Jelila, L.; Zhang, X.; Li, Z.-L. Surface Soil Moisture Estimation from SEVIRI Data Onboard MSG Satellite. In Proceedings of the 2010 IEEE International Geoscience and Remote Sensing Symposium, Honolulu, HI, USA, 25–30 July 2010; pp. 3865–3868.
Category | Methods | Advantages | Disadvantages | References |
---|---|---|---|---|
Optical | Visible-based methods | Good spatial resolution, multi-bands available, mature technology | Vegetation interference, night effects and poor temporal resolution | [63,64] |
Thermal Infrared-based methods | Good spatial resolution, multiple satellites available | Vegetation interference, cloudy contamination, night effects, poor temporal resolution and atmospheric effects | [65,66] | |
Passive microwave | (semi-)empirical, physically-based methods | High accuracy for bare soil surfaces, unlimited by clouds and/or daytime conditions, high temporal resolution | Coarse spatial resolution, influenced by vegetation cover and surface roughness | [67,68] |
Active microwave | (semi-)empirical, physically-based methods | Fine spatial resolution, unlimited by clouds and/or daytime conditions | influenced by surface roughness & vegetation cover amount, coarse temporal resolution | [69,70,71] |
Synergistic methods | Optical & Thermal Infrared | High spatial resolution, simple & straightforward implementation | limited to cloud-free &daytime conditions, poor temporal resolution, low penetration depth | [72,73] |
Active & passive MW | improved temporal and spatial resolution | SMC scaling & validation needs caution, different SMC measurement depths | [74,75] | |
MW & optical | Minimized vegetation and surface roughness effects | SMC scaling & validation needs caution, different SMC measurement depths | [76] |
Name | Equations | Advantages | Disadvantages | References |
---|---|---|---|---|
VCI | (2) | Removing weather and site effects | Difficult to obtain data sources are and error and volatility of instantaneous vegetation index | [100,101] |
AVI | (3) | Reference standards and considering weather effect | Subjectivity andno annual variation | [102] |
NDWI | (4) | More sensitive to SM and insensitive to atmospheric conditions | Limitations in vegetated areas | [103] |
NMDI | (5) | Quick response to moisture changes | The mixed pixel of vegetation and soil | [104,105] |
PDI | (6) | Suitable for bare soil | Limited in vegetated areas and non-flat regions of different soil types. | [107] |
MPDI | (7) | Consideration of vegetation influence | Invariant soil color and fixed soil line | [108] |
Methods | Principle | Advantages | Limitations | References |
---|---|---|---|---|
The physical basis analytical method | Solving the one-dimensional equation by the boundary conditions | Robust physical principle | More auxiliary data and complex calculation | [109,110,111,112,113,114,115,116,117,118] |
The model based on the amplitude and phase information of LST | The phase and amplitude information are used to solve the boundary conditions | Easy and simple to operate, less ground-based measurement data | More approximations and complicate solving process | [119,120,121,122,123,124,125] |
Analysis method based on energy sources | The soil heat flux is the source of thermal inertia | Less input parameters and simple calculation | High-demand conditions, coarse images at night | [126,127,128,129] |
Remote sensing methods combined with soil physical parameters | The definition of thermal inertia | Clear physical meaning | the requirement of the soil physical parameters | [130,131,132] |
Sensors/Missions | Characteristics | Advantages | Limitations | References |
---|---|---|---|---|
SMAP | 1.41 GHz, H, V and HV or VH, IFOV: 40 × 40 km, Swath width: 1000 km, 3 days | high-resolution, high-accurate soil moisture, corrections for rotation | highly influenced by surface roughness, vegetation canopy structure and water content | [160,161,162,163] |
SMOS | 1.4 GHz, H and V, IFOV: 43 × 43 km, 3 days | multi-angular acquisition capability, low sensitivity to cloud and vegetation contamination, high sensitivity to soil moisture fluctuations | poor spatial resolutions, highly influenced by surface roughness and vegetation cover | [164,165,166,167,168,169] |
AMSR-E | 6.6, 10.65, 18.7, 23.8, 36.5, 89GHz, H and V, IFOV: 76 × 44, 49 × 28, 28 × 16, 31 × 18, 14 × 8, 6 × 4 km, Swath width: 1445 km, 2 days | Long-term observations, high revisit frequency | coarse-scale resolution, data records overlap, small penetration depth | [170,171,172,173,174] |
Sentinel-1 | 5.405 GHz, HH-HV and VV-VH, 3 h or less | High-accurate soil moisture, high spatial and temporal resolution | highly influenced by surface roughness and vegetation conditions | [175,176,177] |
Landsat | 30 m (15 m for Band 8 of OLI), 16 days | Good spatial resolution, multi-bands available | Vegetation and cloud interference, night effects | [178,179] |
MODIS | 1000 m (250 m for panchromatic bands), 1 day | Good spatial resolution, multiple satellites available | Vegetation interference, cloudy contamination, night and atmospheric effects | [180,181] |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, D.; Zhou, G. Estimation of Soil Moisture from Optical and Thermal Remote Sensing: A Review. Sensors 2016, 16, 1308. https://doi.org/10.3390/s16081308
Zhang D, Zhou G. Estimation of Soil Moisture from Optical and Thermal Remote Sensing: A Review. Sensors. 2016; 16(8):1308. https://doi.org/10.3390/s16081308
Chicago/Turabian StyleZhang, Dianjun, and Guoqing Zhou. 2016. "Estimation of Soil Moisture from Optical and Thermal Remote Sensing: A Review" Sensors 16, no. 8: 1308. https://doi.org/10.3390/s16081308
APA StyleZhang, D., & Zhou, G. (2016). Estimation of Soil Moisture from Optical and Thermal Remote Sensing: A Review. Sensors, 16(8), 1308. https://doi.org/10.3390/s16081308