Initial Stability Assessment of S-NPP VIIRS Reflective Solar Band Calibration Using Invariant Desert and Deep Convective Cloud Targets
Abstract
:1. Introduction
2. Sensor Overview and Dataset Selection
3. Methodology
3.1. Desert Approach
3.2. DCC Approach
4. Target Temporal Variability
5. Trend Significance
6. Concluding Remarks
Acknowledgments
Author Contributions
Conflicts of Interest
Reference
- Wielicki, B.A.; Barkstrom, B.R.; Harrison, E.F.; Lee, R.B., III; Smith, G.L.; Cooper, J.E. Clouds and the earth’s radiant energy system (CERES): An earth observing system experiment. Bull. Am. Meteor. Soc 1996, 77, 853–868. [Google Scholar]
- Loeb, N.G.; Kato, S.; Loukachine, K.; Smith, N.M. Angular distribution models for top-of-atmosphere radiative flux estimation from the Clouds and the Earth’s Radiant Energy System instrument on the Terra satellite. Part I: Methodology. J. Atmos. Ocean. Technol 2005, 22, 338–351. [Google Scholar]
- Loeb, N.G.; Kato, S.; Loukachine, K.; Smith, N.M.; Doelling, D.R. Angular distribution models for top-of-atmosphere radiative flux estimation from the Clouds and the Earth’s Radiant Energy System instrument on the Terra satellite. Part II: Validation. J. Atmos. Ocean. Technol 2007, 24, 564–584. [Google Scholar]
- MODIS Atmosphere. Available online: http://modis-atmos.gsfc.nasa.gov/MOD06_L2/ (accessed on 20 February 2014).
- Minnis, P.; Sun-Mack, S.; Young, D.F.; Heck, P.W.; Garber, D.P.; Chen, Y.; Spangenberg, D.A.; Arduini, R.F.; Trepte, Q.Z.; Smith, W.L.; et al. CERES Edition-2 cloud property retrievals using TRMM VIRS and Terra and Aqua MODIS data, Part I: Algorithms. IEEE Trans. Geosci. Remote Sens 2011, 49. [Google Scholar] [CrossRef]
- Priestley, K.; Thomas, S.; Smith, G.L. Ceres Flight Model 5 on NPP: Post-Launch Performance and Initial Sensor Data Record Validation Results. In Proceedings of the 2012 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Munich, Germany, 22–27 July 2012; pp. 1096–1099.
- Xiong, X.; Chiang, K.; McIntire, J.; Oudrari, H.; Wu, A.; Schwaller, M.; Butler, J. Early Assessment of VIIRS On-Orbit Calibration and Support Activities. In Proceedings of the 2012 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Munich, Germany, 22–27 July 2012; pp. 7189–7192.
- Cao, C.; de Luccia, F.J.; Xiong, X.; Wolfe, R.; Weng, F. Early on-orbit performance of the visible infrared imaging radiometer suite onboard the suomi national polar-orbiting Partnership (S-NPP) satellite. Trans. Geosci. Remote Sens 2014, 52. [Google Scholar] [CrossRef]
- VIIRS Land. Available online: http://viirsland.gsfc.nasa.gov/Products.html (accessed on 20 February 2014).
- Kizu, S.; Kawamura, H. Degradation of the VISSR Visible Sensor on GMS-3 during June 1987 December 1988. J. Atmos. Ocean. Tech 1993, 10, 509–517. [Google Scholar]
- Moulin, C.; Lambert, C.E.; Poitou, J.; Dulac, F. Long term (1983–1994) calibration of the Meteosat solar (VIS) channel using desert and ocean targets. Int. J. Remote Sens 1996, 17, 1183–1200. [Google Scholar]
- Rao, C.R.N.; Chen, J. Revised post-launch calibration of channels 1 and 2 of the advanced very high resolution radiometer on board the NOAA-14 spacecraft. Int. J. Remote Sens 1999, 20, 3485–3491. [Google Scholar]
- Smith, D.L.; Mutlow, C.T.; Rao, C.R.N. Calibration monitoring of the visible and near-infrared channels of the Along-Track Scanning Radiometer-2 by use of stable terrestrial sites. Appl. Opt 2002, 41, 515–523. [Google Scholar]
- Hu, Y.; Wielicki, B.; Yang, P.; Stackhouse, P.; Lin, B.; Young, D. Application of deep convective cloud albedo observations to satellite-based study of terrestrial atmosphere: Monitoring stability of space-borne measurements and assessing absorption anomaly. IEEE Trans. Geosci. Remote Sens 2004, 42, 2594–2599. [Google Scholar]
- Doelling, D.R.; Nguyen, L.; Minnis, P. On the use of deep convective clouds to calibrate AVHRR data. Proc. SPIE 2004. [Google Scholar] [CrossRef]
- Helder, D.L.; Markham, B.; Thome, K.; Barsi, J.; Chander, G.; Malla, R. Updated radiometric calibration for the Landsat 5 Thematic Mapper reflective bands. IEEE Trans. Geosci. Remote Sens 2008, 46, 3309–3325. [Google Scholar]
- Chander, G.; Xiong, X.; Choi, T.; Angal, A. Monitoring on-orbit calibration stability of the Terra MODIS and Landsat 7 ETM+ sensors using pseudo-invariant test sites. Remote Sens. Environ 2010, 114, 925–939. [Google Scholar]
- Wu, A.; Xiong, X.; Doelling, D.R.; Morstad, D.L.; Angal, A.; Bhatt, R. Characterization of Terra and Aqua MODIS VIS, NIR, and SWIR spectral band calibration stability. IEEE Trans. Geosci. Remote Sens 2012, 51, 4330–4338. [Google Scholar]
- Helder, D.L.; Karki, S.; Bhatt, R.; Micijevic, E.; Aaron, D. Radiometric calibration of the Landsat MSS sensor series. IEEE Trans. Geosci. Remote Sens 2012, 50, 2380–2399. [Google Scholar]
- Bhatt, R.; Doelling, D.R.; Morstad, D.; Scarino, B.R.; Gopalan, A. Desert-based absolute calibration of successive geostationary visible sensors using a daily exoatmospheric radiance model. IEEE Trans. Geosci. Remote Sens 2014, 52, 3670–3682. [Google Scholar]
- Helder, D.L.; Basnet, B.; Morstad, D.L. Optimized identification of worldwide radiometric pseudo-invariant calibration sites. Can. J. Remote Sens 2010, 36, 527–539. [Google Scholar]
- Cosnefroy, H.; Leroy, M.; Briottet, X. Selection and characterization of Saharan and Arabian desert sites for the calibration of optical satellite sensors. Remote Sens. Environ 1996, 58, 101–114. [Google Scholar]
- Teillet, P.; Barsi, J.; Chander, G.; Thome, K. Prime candidate earth targets for the post-launch radiometric calibration of space-based optical imaging instruments. Proc. SPIE 2007. [Google Scholar] [CrossRef]
- CEOS WGCV Calibration and Validation Portal. Available online: http://calvalportal.ceos.org (accessed on 20 February 2014).
- Toller, G.; Xiong, X.; Sun, J.; Wenny, B.N.; Geng, X.; Kuyper, J.; Angal, A.; Chen, H.; Madhavan, S.; Wu, A. Terra and aqua moderate-resolution imaging spectroradiometer collection 6 level 1B algorithm. J. Appl. Remote Sens 2013, 7. [Google Scholar] [CrossRef]
- Sun, J.; Angal, A.; Xiong, X.; Chen, H.; Geng, X.; Wu, A.; Choi, T.; Chu, M. MODIS RSB calibration improvements in Collection 6. Proc. SPIE 2012. [Google Scholar] [CrossRef]
- Wenny, B.N.; Wu, A.; Madhavan, S.; Wang, Z.; Li, Y.; Chen, N.; Chiang, V.; Xiong, X. MODIS TEB calibration approach in collection 6. Proc. SPIE 2012. [Google Scholar] [CrossRef]
- Wang, L.; Qu, J.J.; Xiong, X.; Hao, X.; Xie, Y.; Che, N. A new method for retrieving band 6 of aqua MODIS. IEEE Geosci. Remote Sens. Lett 2006, 3, 267–270. [Google Scholar]
- Bhatt, R.; Doelling, D.R.; Scarino, B.; Gopalan, A.; Haney, C.O. An initial assessment of the VIIRS onboard calibration using DCC and desert referenced to the Aqua-MODIS calibration. Proc. SPIE 2013. [Google Scholar] [CrossRef]
- Doelling, D.R.; Hong, G.; Morstad, D.L.; Bhatt, R.; Gopalan, A.; Xiong, X. The characterization of deep convective cloud albedo as a calibration target using MODIS reflectances. Proc. SPIE 2010. [Google Scholar] [CrossRef]
- Doelling, D.R.; Morstad, D.L.; Scarino, B.R.; Bhatt, R.; Gopalan, A. The characterization of deep convective clouds as an invariant calibration target and as a visible calibration technique. IEEE Trans. Geosci. Remote Sens 2013, 51, 1147–1159. [Google Scholar]
- Doelling, D.R.; Morstad, D.L.; Bhatt, R.; Scarino, B. Algorithm Theoretical Basis Document (ATBD) for Deep Convective Cloud (DCC) Technique of Calibrating GEO Sensors with Aqua-MODIS for GSICS, GSICS, 2011. Available online: http://gsics.nesdis.noaa.gov/pub/Development/AtbdCentral/GSICS_ATBD_DCC_NASA_2011_09.pdf (accessed on 20 February 2014).
- Angal, A.; Chander, G.; Xiong, X.; Choi, T.; Wu, A. Characterization of the Sonoran Desert as a radiometric calibration target for earth observing sensors. J. Appl. Remote Sens 2001, 5. [Google Scholar] [CrossRef]
- Weatherhead, E.C.; Reinsel, G.C.; Tiao, G.C.; Meng, X.L.; Choi, D.S.; Cheang, W.K.; Keller, T.L.; Deluisi, J.; Wuebbles, D.J.; Kerr, J.B.; et al. Factors affecting the detection of trends: Statistical considerations and applications to environmental data. J. Geophys. Res 1998, 103, 17149–17161. [Google Scholar]
- Weatherhead, E.C.; Reinsel, G.C.; Tiao, G.C.; Jackman, C.H.; Fleming, E.L.; Bishop, L.; DeLuisi, J.; Keller, T.; Herman, J.; McPeters, R.; et al. Detecting the recovery of total column ozone. J. Geophys. Res 2000, 105, 22201–22210. [Google Scholar]
Band | Central Wavelength (nm) | Spatial Resolution at Nadir (m) | Spectral Region |
---|---|---|---|
M3 | 488 | 750 | VIS |
M4 | 555 | 750 | VIS |
M5 | 672 | 750 | VIS |
M7 | 865 | 750 | NIR |
M10 | 1610 | 750 | SWIR |
M11 | 2250 | 750 | SWIR |
I1 | 640 | 375 | VIS |
I3 | 1610 | 375 | SWIR |
VIIRS/MODIS Band | Libya-4 | DCC | ||||
---|---|---|---|---|---|---|
Observed MODIS Stability (%) | Observed VIIRS Stability (%) | Observed MODIS Stability (%) | Observed VIIRS Stability (%) | |||
Full Record | VIIRS Timeframe | Full Record | VIIRS Timeframe | |||
M3/B3 | 1.1 | 1.3 | 1.4 | 0.8 | 0.5 | 0.5 |
M4/B4 | 1.0 | 1.2 | 1.1 | 0.7 | 0.5 | 0.5 |
M5/B1 | 0.9 | 1.0 | 0.8 | 0.9 | 0.6 | 0.4 |
M7/B2 | 1.0 | 1.0 | 0.9 | MODIS band saturates | 0.5 | |
M10/B6 | 0.8 | 0.9 | 1.1 | 2.1 | 2.1 | 2.2 |
M11/B7 | 1.9 | 2.1 | 1.6 | 3.9 | 3.1 | 1.6 |
I1/B1 | 0.9 | 1.0 | 0.8 | 0.9 | 0.6 | 0.5 |
I3/B6 | 0.8 | 0.9 | 1.3 | 2.1 | 2.1 | 2.2 |
VIIRS Band | Libya-4 | DCC | ||
---|---|---|---|---|
Observed Trend (%/yr) | Minimum Detectable Trend ± (%/yr) | Observed Trend (%/yr) | Minimum Detectable Trend ± (%/yr) | |
M3 | 0.77 | 1.83 | −0.08 | 0.53 |
M4 | 0.50 | 1.66 | −0.67 | 0.82 |
M5 | 0.71 | 1.34 | −0.16 | 0.54 |
M7 | 0.63 | 1.70 | −0.11 | 0.44 |
M10 | 0.71 | 2.00 | −0.87 | 3.24 |
M11 | 0.05 | 2.60 | −0.51 | 2.2 |
I1 | 0.31 | 1.26 | −0.42 | 0.52 |
I3 | 0.76 | 2.50 | −0.87 | 3.22 |
Libya-4 (MODIS Full Record) | DCC (VIIRS) | |||
---|---|---|---|---|
Band | Trend ± (%/Decade) | Years To Detect Trend | Trend ± (%/Decade) | Years to Detect Trend |
M3 | 1.1 | 11 | 0.5 | 8 |
M4 | 1.0 | 11 | 0.5 | 10 |
M5 | 0.9 | 10 | 0.4 | 9 |
M7 | 1.0 | 11 | 0.5 | 7 |
M10 | 0.8 | 14 | 2.2 | 9 |
M11 | 1.9 | 10 | 1.6 | 9 |
I1 | 0.9 | 10 | 0.5 | 7 |
I3 | 0.8 | 17 | 2.2 | 9 |
© 2014 by the authors; licensee MDPI, Basel, Switzerland This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Bhatt, R.; Doelling, D.R.; Wu, A.; Xiong, X.; Scarino, B.R.; Haney, C.O.; Gopalan, A. Initial Stability Assessment of S-NPP VIIRS Reflective Solar Band Calibration Using Invariant Desert and Deep Convective Cloud Targets. Remote Sens. 2014, 6, 2809-2826. https://doi.org/10.3390/rs6042809
Bhatt R, Doelling DR, Wu A, Xiong X, Scarino BR, Haney CO, Gopalan A. Initial Stability Assessment of S-NPP VIIRS Reflective Solar Band Calibration Using Invariant Desert and Deep Convective Cloud Targets. Remote Sensing. 2014; 6(4):2809-2826. https://doi.org/10.3390/rs6042809
Chicago/Turabian StyleBhatt, Rajendra, David R. Doelling, Aisheng Wu, Xiaoxiong Xiong, Benjamin R. Scarino, Conor O. Haney, and Arun Gopalan. 2014. "Initial Stability Assessment of S-NPP VIIRS Reflective Solar Band Calibration Using Invariant Desert and Deep Convective Cloud Targets" Remote Sensing 6, no. 4: 2809-2826. https://doi.org/10.3390/rs6042809
APA StyleBhatt, R., Doelling, D. R., Wu, A., Xiong, X., Scarino, B. R., Haney, C. O., & Gopalan, A. (2014). Initial Stability Assessment of S-NPP VIIRS Reflective Solar Band Calibration Using Invariant Desert and Deep Convective Cloud Targets. Remote Sensing, 6(4), 2809-2826. https://doi.org/10.3390/rs6042809