Remote Sensing of Irrigated Agriculture: Opportunities and Challenges
Abstract
:1. Introduction
Advantages and disadvantages of remote sensing
Definition of irrigation
2. Review of Existing Studies
Satellite observation system/program | Technical observation challenges solved | Access to information/data worldwide | Continuous observation program with global coverage | Pre-processed datasets accessible | Image data cost | Technical difficulty required to produce maps | Frequency of use in irrigation studies |
---|---|---|---|---|---|---|---|
RapidEYE | yes | no | yes | yes | high | medium | low |
Landsat | yes | yes | yes | yes | low | medium | high |
SPOT | yes | yes | yes | yes | high | medium | medium |
AWiFS | yes | no | no | yes | high | medium | low |
LISS | yes | no | no | yes | high | medium | low |
ASTER | yes | yes | no | yes | low | medium | low |
CBERS | no | no | no | no | low | medium | low |
THEOS | yes | no | no | yes | medium | medium | low |
MODIS | yes | yes | yes | yes | low | high | medium |
MERIS | yes | yes | yes | yes | low | high | low |
AVHRR | yes | yes | yes | yes | low | high | medium |
SPOT VEG. | yes | no/yes | yes | maybe | low | medium | low |
Spatial scale | Sensors used | Method of mapping | References |
---|---|---|---|
local | Landsat TM/ETM+, SPOT, LISS, ASTER, AWiFS, CBERS, THEOS | Photo interpretation, Image arithmetic, Image classification, segmentation, image fusion | [26,27,28,29,31,32,33,42,43,44,98] |
regional | Landsat TM/ETM+,MODIS, MERIS, AVHRR, SPOT VGT | Times-series analysis, Supervised/unsupervised classification, masking | [21,47,48,49,50,53] |
continental | Landsat TM/ETM+, MODIS, MERIS, AVHRR, SPOT VGT | Times-series analysis with other ancillary data, data fusion | [7,19,20,21,49,52,98] |
global | MODIS, MERIS, AVHRR, SPOT VGT | Unsupervised clustering, machine learning algorithms applied to time-series data, also employ other ancillary data(statistic, ground truth data…) | [22,54,55,56,57] |
2.1. Local Scale Studies
Visual interpretation of satellite imagery
Digital image classification
2.2. Regional Studies
2.3. Global Studies
3. Emerging Patterns from Existing Studies
Spatial resolution requirements
Spectral data requirements
Temporal data requirements
4. Areas that Require Further Research
Use of Radar data
Use of passive microwaves for moisture status
Classification algorithms with many-to-one mapping capabilities
Object-oriented classification
Data Fusion
5. Conclusions
Acknowledgements
References and Notes
- Gleick, P.H. Global freshwater resources: Soft-path solutions for the 21st century. Science 2003, 302, 1524. [Google Scholar] [CrossRef] [PubMed]
- Rosegrant, M.W.; Meijer, S.; Cline, S.A. International Model for Policy Analysis of Agricultural Commodities and Trade (IMPACT): Model Description; IFPRI: Washington, DC, USA, 2002. [Google Scholar]
- Cai, X.; Rosegrant, M.W. Global water demand and supply projections. Water Int. 2002, 27, 159–169. [Google Scholar] [CrossRef]
- Stockholm International Water Institute. Available online: http://www.siwi.org/ (accessed on 17 June 2010).
- Boucher, O.; Myhre, G.; Myhre, A. Direct human influence of irrigation on atmospheric water vapour and climate. Climate Dynamics 2004, 22, 597–603. [Google Scholar] [CrossRef]
- Gordon, L.J.; Steffen, W.; Jönsson, B.F.; Folke, C.; Falkenmark, M.; Johannessen, A. Human modification of global water vapor flows from the land surface. Proc. Nat. Acad. Sci. USA 2005, 102, 7612. [Google Scholar] [CrossRef] [PubMed]
- Ozdogan, M.; Woodcock, C.E.; Salvucci, G.D.; Demir, H. Changes in summer irrigated crop area and water use in southeastern Turkey from 1993 to 2002: Implications for current and future water resources. Water Resour. Manag. 2006, 20, 467–488. [Google Scholar] [CrossRef]
- Wisser, D.; Frolking, S.; Douglas, E.M.; Fekete, B.M.; Vörösmarty, C.J.; Schumann, A.H. Global irrigation water demand: Variability and uncertainties arising from agricultural and climate data sets. Geophys. Res. Lett. 2008, 35, L24408. [Google Scholar] [CrossRef]
- Alcamo, J.; Döll, P.; Henrichs, T.; Kaspar, F.; Lehner, B.; Rösch, T.; Siebert, S. Global estimates of water withdrawals and availability under current and future “business-as-usual” conditions. Hydrol. Sci. J. 2003, 48, 339–348. [Google Scholar] [CrossRef]
- Droogers, P.; Aerts, J. Adaptation strategies to climate change and climate variability: A comparative study between seven contrasting river basins. Phys. Chem. Earth, Parts A/B/C 2005, 30, 339–346. [Google Scholar] [CrossRef]
- Jones, R.N. Analysing the risk of climate change using an irrigation demand model. Climate Res. 2000, 14, 89–100. [Google Scholar] [CrossRef]
- Rosenzweig, C.; Strzepek, K.M.; Major, D.C.; Iglesias, A.; Yates, D.N.; McCluskey, A.; Hillel, D. Water resources for agriculture in a changing climate: International case studies. Glob. Environ. Change Part A 2004, 14, 345–360. [Google Scholar] [CrossRef]
- Vörösmarty, C.J.; Green, P.; Salisbury, J.; Lammers, R.B. Global water resources: Vulnerability from climate change and population growth. Science 2000, 289, 284–288. [Google Scholar] [CrossRef] [PubMed]
- Vörösmarty, C.J.; Sahagian, D. Anthropogenic disturbance of the terrestrial water cycle. BioScience 2000, 50, 753–765. [Google Scholar] [CrossRef]
- Moore, N.; Rojstaczer, S. Irrigation’s influence on precipitation—Texas High Plains, U.S.A. Geophys. Res. Lett. 2002, 29. [Google Scholar] [CrossRef]
- Kueppers, L.M.; Snyder, M.A.; Sloan, L.C. Irrigation cooling effect: Regional climate forcing by land-use change. Geophys. Res. Lett. 2007, 34, L03703. [Google Scholar] [CrossRef]
- Vörösmarty, C.J. Global water assessment and potential contributions from Earth Systems Science. Aqua. Sci.-Res. Across Boundaries 2002, 64, 328–351. [Google Scholar] [CrossRef]
- Bastiaanssen, W.G.M.; Molden, D.J.; Makin, I.W. Remote sensing for irrigated agriculture: Examples from research and possible applications. Agr. Water Manag. 2000, 46, 137–155. [Google Scholar] [CrossRef]
- Thenkabail, P.S.; Dheeravath, V.; Biradar, C.M.; Gangalakunta, O.R.P.; Noojipady, P.; Gurappa, C.; Velpuri, M.; Gumma, M.; Li, Y. Irrigated area maps and statistics of India using remote sensing and national statistics. Remote Sensing 2009, 1, 50–67. [Google Scholar] [CrossRef]
- Ozdogan, M.; Gutman, G. A new methodology to map irrigated areas using multi-temporal MODIS and ancillary data: An application example in the continental US. Remote Sens. Environ. 2008, 112, 3520–3537. [Google Scholar] [CrossRef]
- Thenkabail, P.S.; Schull, M.; Turral, H. Ganges and Indus river basin land use/land cover (LULC) and irrigated area mapping using continuous streams of MODIS data. Remote Sens. Environ. 2005, 95, 317–341. [Google Scholar] [CrossRef]
- Loveland, T.R.; Reed, B.C.; Brown, J.F.; Ohlen, D.O.; Zhu, Z.; Yang, L.; Merchant, J.W. Development of a global land cover characteristics database and IGBP DISCover from 1 km AVHRR data. Int. J. Remote Sens. 2000, 21, 1303–1330. [Google Scholar] [CrossRef]
- Pittman, K.; Hansen, M.C.; Becker-Reshef, I.; Potapov, P.V.; Justice, C.O. Estimating global cropland extent with multi-year MODIS data. Remote Sensing 2010, 2, 1844–1863. [Google Scholar] [CrossRef]
- Friedl, M.A.; McIver, D.K.; Hodges, J.C.F.; Zhang, X.Y.; Muchoney, D.; Strahler, A.H.; Woodcock, C.E.; Gopal, S.; Schneider, A.; Cooper, A. Global land cover mapping from MODIS: Algorithms and early results. Remote Sens. Environ. 2002, 83, 287–302. [Google Scholar] [CrossRef]
- FAO. Topics: Irrigation. Water Development and Management Unit, United Nations Food and Agricultural Organization. Available online: http://www.fao.org/nr/water/topics_irrigation.html (accessed on 17 June 2010).
- Huston, D.M.; Titus, S.J. An Inventory of Irrigated Lands for Selected Counties within the State of California Based on Landsat and Supporting Aircraft Data; Space Sciences Laboratory Semi-Annual Progress Report; Space Sciences Laboratory Series 16; University of California: Berkeley, CA, USA, 1975; p. 23. [Google Scholar]
- Draeger, W.U. Monitoring Irrigated Land Acreage Using Landsat Imagery: An Application Example; USGS Open-file Report No. 76-630; USGS: Sioux Falls, SD, USA, 1976; p. 23.
- Heller, R.C.; Johnson, K.A. Estimating irrigated land acreage from Landsat imagery. Photogramm. Eng. Remote Sensing 1979, 45, 1379–1386. [Google Scholar]
- Thiruvengadachari, S. Satellite sensing of irrigation patterns in semiarid areas—An Indian study. Photogramm. Eng. Remote Sensing 1981, 47, 1493–1499. [Google Scholar]
- Kolm, K.E.; Case, H.L. The identification of irrigated crop types and estimation of acreages from Landsat imagery. Photogramm. Eng. Remote Sensing 1984, 50, 1479–1490. [Google Scholar]
- Thelin, G.P.; Heimes, F.J. Mapping Irrigated Cropland from Landsat Data for Determination of Water Use from the High Plains Aquifer in Parts of Colorado, Kansas, Nebraska, New Mexico, Oklahoma, South Dakota, Texas, and Wyoming; US Geological Survey Professional Paper; USGS: Washington, DC, USA, 1987.
- Rundquist, D.; Hoffman, R.; Carlson, M.; Cook, A. The Nebraska center-pivot inventory—An example of operational satellite remote sensing on a long term basis. Photogramm. Eng. Remote Sensing 1989, 55, 587–590. [Google Scholar]
- Eckhardt, D.W.; Verdin, J.P.; Lyford, G.R. Automated update of an irrigated lands GIS using SPOT HRV imagery. Photogramm. Eng. Remote Sensing 1990, 56, 1515–1522. [Google Scholar]
- Ram, B.; Kolarkar, A.S. Remote sensing application in monitoring land-use changes in arid Rajasthan. Int. J. Remote Sens. 1993, 14, 3191–3200. [Google Scholar] [CrossRef]
- Pax-Lenney, M.; Woodcock, C.E.; Collins, J.B.; Hamdi, H. The status of agricultural lands in Egypt: The use of multitemporal NDVI features derived from Landsat TM. Remote Sens. Environ. 1996, 56, 8–20. [Google Scholar] [CrossRef]
- Abuzar, M.; McAllister, A.; Morris, M. Classification of seasonal images for monitoring irrigated crops in a salinity-affected area of Australia. Int. J. Remote Sens. 2001, 22, 717–726. [Google Scholar] [CrossRef]
- Beltran, C.M.; Belmonte, A.C. Irrigated crop area estimation using Landsat TM imagery in La Mancha, Spain. Photogramm. Eng. Remote Sensing 2001, 67, 1177–1184. [Google Scholar]
- Keene, K.M.; Conley, C.D. Measurement of irrigated acreage in western Kansas from Landsat images. Environ. Geol. 1980, 3, 107–116. [Google Scholar] [CrossRef]
- Haack, B.; Wolf, J.; English, R. Remote sensing change detection of irrigated agriculture in Afghanistan. Geocarto Int. 1998, 13, 65–75. [Google Scholar] [CrossRef]
- Rao, P.P.N.; Mohankumar, A. Cropland inventory in the command area of Krishnarajasagar project using satellite data. Int. J. Remote Sens. 1994, 15, 1295–1305. [Google Scholar]
- El-Magd, I.A.; Tanton, T.W. Improvements in land use mapping for irrigated agriculture from satellite sensor data using a multi-stage maximum likelihood classification. Int. J. Remote Sens. 2003, 24, 4197–4206. [Google Scholar] [CrossRef]
- Kauth, R.J.; Thomas, G.S. The tasseled cap: graphic description of the spectral-temporal development of agricultural crops as seen by Landsat. In Proceedings of the Symposium on Machine Processing of Remotely Sensed Data, West Lafayette, IN, USA, June 29–1 July 1976; pp. 41–51.
- Manavalan, P.; Kesavasamy, K.; Adiga, S. Irrigated crops monitoring through seasons using digital change detection analysis of IRS-LISS 2 data. Int. J. Remote Sens. 1995, 16, 633–640. [Google Scholar] [CrossRef]
- Starbuck, M.J.; Tamayo, J. Monitoring vegetation change in Abu Dhabi Emirate from 1996 to 2000 and 2004 using Landsat satellite imagery. Arab Gulf J. Scientific Res. 2007, 25, 71–80. [Google Scholar]
- Simonneaux, V.; Duchemin, B.; Helson, D.; Raki, E.; Olioso, A.; Chehbouni, A. The use of high-resolution image time series for crop classification and evapotranspiration estimate over an irrigated area in central Morocco. Int. J. Remote Sens. 2008, 29, 95–116. [Google Scholar] [CrossRef] [Green Version]
- Akbari, M.; Mamanpoush, A.; Gieske, A.; Miranzadeh, M.; Torabi, M.; Salemi, H.R. Crop and land cover classification in Iran using Landsat 7 imagery. Int. J. Remote Sens. 2006, 27, 4117–4135. [Google Scholar] [CrossRef]
- Toomanian, N.; Gieske, A.S.M.; Akbary, M. Irrigated area determination by NOAA-Landsat upscaling techniques, Zayandeh River Basin, Isfahan, Iran. Int. J. Remote Sens. 2004, 25, 4945–4960. [Google Scholar] [CrossRef]
- Xiao, X.; Boles, S.; Liu, J.; Zhuang, D.; Frolking, S.; Li, C.; Salas, W.; Moore Iii, B. Mapping paddy rice agriculture in southern China using multi-temporal MODIS images. Remote Sens. Environ. 2005, 95, 480–492. [Google Scholar] [CrossRef]
- Biggs, T.W.; Thenkabail, P.S.; Gumma, M.K.; Scott, C.A.; Parthasaradhi, G.R.; Turral, H.N. Irrigated area mapping in heterogeneous landscapes with MODIS time series, ground truth and census data, Krishna Basin, India. Int. J. Remote Sens. 2006, 27, 4245–4266. [Google Scholar] [CrossRef]
- Alexandridis, T.K.; Zalidis, G.C.; Silleos, N.G. Mapping irrigated area in Mediterranean basins using low cost satellite Earth Observation. Comput. Electron. Agr. 2008, 64, 93–103. [Google Scholar] [CrossRef]
- Wardlow, B.D.; Egbert, S.L. Large-area crop mapping using time-series MODIS 250 m NDVI data: An assessment for the US Central Great Plains. Remote Sens. Environ. 2008, 112, 1096–1116. [Google Scholar] [CrossRef]
- Dheeravath, V.; Thenkabail, P.S.; Chandrakantha, G.; Noojipady, P.; Reddy, G.P.O.; Biradar, C.M.; Gumma, M.K.; Velpuri, M. Irrigated areas of India derived using MODIS 500 m time series for the years 2001-2003. ISPRS J. Photogramm. Remote Sens. 2009, 65, 42–59. [Google Scholar] [CrossRef]
- Kamthonkiat, D.; Honda, K.; Turral, H.; Tripathi, N.K.; Wuwongse, V. Discrimination of irrigated and rainfed rice in a tropical agricultural system using SPOT VEGETATION NDVI and rainfall data. Int. J. Remote Sens. 2005, 26, 2527–2547. [Google Scholar] [CrossRef]
- FAO. FAOSTAT-PC, FAO Statistics on diskette. Food and Agriculture Organization of the United Nations: Rome, Italy, 1998. [Google Scholar]
- Arino, O.; Gross, D.; Ranera, F.; Bourg, L.; Leroy, M.; Bicheron, P.; Latham, J.; Di Gregorio, A.; Brockman, C.; Witt, R. GlobCover: ESA service for global land cover from MERIS. In Proceedings of IEEE International Geoscience and Remote Sensing Symposium, Barcelona, Spain, 23–28 July 2007; pp. 2412–2415.
- Thenkabail, P.S.; Parthasaradhi, G.; Biggs, T.W.; Gumma, M.K.; Turral, H. Spectral matching techniques to determine historical land use/land cover (LULC) and irrigated areas using time-series AVHRR Pathfinder datasets in the Krishna river basin, India. Photogramm. Eng. Remote Sensing 2007, 73, 1029–1040. [Google Scholar]
- Thenkabail, P.S.; Biradar, C.M.; Noojipady, P.; Dheeravath, V.; Li, Y.J.; Velpuri, M.; Gumma, M.; Gangalakuntag, O.R.P.; Turral, H.; Cai, X.L.; Vithanage, J.; Schull, M.A.; Dutta, R. Global irrigated area map (GIAM), derived from remote sensing, for the end of the last millennium. Int. J. Remote Sens. 2009, 30, 3679–3733. [Google Scholar] [CrossRef]
- Thenkabail, P.S.; Biradar, C.M.; Noojipady, P.; Cai, X.; Dheeravath, V.; Li, Y.; Velpuri, M.; Gumma, M.K.; Pandey, S. Sub-pixel area calculation methods for estimating irrigated areas. Sensors 2007, 7, 2519–2538. [Google Scholar] [CrossRef] [Green Version]
- Kurz, B.; Seelan, S.K. Use of remote sensing to map irrigated agriculture in areas overlying the Ogallala Aquifer, U.S. In Remote Sensing of Global Croplands for Food Security; Thenkabail, P.S., Turral, H., Lyon, J.G., Biradar, C., Eds.; CRC Press: Boca Raton, FL, USA, 2009. [Google Scholar]
- Lobell, D.B.; Asner, G.P.; Ortiz-Monasterio, J.I.; Benning, T.L. Remote sensing of regional crop production in the Yaqui Valley, Mexico: Estimates and uncertainties. Agr. Ecosyst. Environ. 2003, 94, 205–220. [Google Scholar] [CrossRef]
- Ozdogan, M. Mapping crop types from temporal unmixing of MODIS data: The case for Independent Component Analysis. Remote Sens. Environ. 2010, 114, 1190–1204. [Google Scholar] [CrossRef]
- Hutmacher, R.B. Infrared thermometry for canopy temperature measurements: applications and limitation in irrigation scheduling. In Sensor and Techniques for Irrigation Management; California State University: Fresno, CA, USA, 1988; pp. 19–22. [Google Scholar]
- Velpuri, N.M.; Thenkabail, P.S.; Gumma, M.K.; Biradar, C.M.; Dheeravath, V.; Noojipady, P.; Yuanjie, L. Influence of Resolution in Irrigated Area Mapping and Area Estimations. Photogramm. Eng. Remote Sensing 2009, 75, 1383–1396. [Google Scholar] [CrossRef]
- Tan, B.; Woodcock, C.E.; Hu, J.; Zhang, P.; Ozdogan, M.; Huang, D.; Yang, W.; Knyazikhin, Y.; Myneni, R.B. The impact of gridding artifacts on the local spatial properties of MODIS data: Implications for validation, compositing, and band-to-band registration across resolutions. Remote Sens. Environ. 2006, 105, 98–114. [Google Scholar] [CrossRef]
- De Fries, R.S.; Hansen, M.; Townshend, J.R.G.; Sohlberg, R. Global land cover classifications at 8 km spatial resolution: the use of training data derived from Landsat imagery in decision tree classifiers. Int. J. Remote Sens. 1998, 19, 3141–3168. [Google Scholar] [CrossRef]
- Roy, D.P.; Lewis, P.E.; Justice, C.O. Burned area mapping using multi-temporal moderate spatial resolution data—A bi-directional reflectance model-based expectation approach. Remote Sens. Environ. 2002, 83, 263–286. [Google Scholar] [CrossRef]
- Frolking, S.; Xiao, X.; Zhuang, Y.; Salas, W.; Li, C. Agricultural land-use in China: A comparison of area estimates from ground-based census and satellite-borne remote sensing. Glob. Ecol. Biogeogr. 1999, 8, 407–416. [Google Scholar] [CrossRef]
- Woodcock, C.E.; Strahler, A.H. The factor of scale in remote sensing. Remote Sens. Environ. 1987, 21, 311–332. [Google Scholar] [CrossRef]
- Moody, A.; Woodcock, C.E. The influence of scale and the spatial characteristics of landscapes on land-cover mapping using remote sensing. Landscape Ecol. 1995, 10, 363–379. [Google Scholar] [CrossRef]
- Turner, M.G. Landscape ecology: the effect of pattern on process. Ann. Rev. Ecol. Systemat. 1989, 20, 171–197. [Google Scholar] [CrossRef]
- Droogers, P. Global Irrigated Area Mapping: Overview and Recommendations; Working Paper 36; International Water Management Institute: Colombo, Sri Lanka, 2002. [Google Scholar]
- Goward, S.N.; Markham, B.; Dye, D.G.; Dulaney, W.; Yang, J. Normalized difference vegetation index measurements from the Advanced Very High Resolution Radiometer. Remote Sens. Environ. 1991, 35, 257–277. [Google Scholar] [CrossRef]
- Justice, C.O.; Townshend, J.R.G.; Holben, B.N.; Tucker, C.J. Analysis of the phenology of global vegetation using meteorological satellite data. Int. J. Remote Sens. 1985, 6, 1271–1318. [Google Scholar] [CrossRef]
- Myneni, R.B.; Hall, F.G.; Sellers, P.J.; Marshak, A.L. The interpretation of spectral vegetation indexes. IEEE Trans. Geosci. Remote Sens. 1995, 33, 481–486. [Google Scholar] [CrossRef]
- Tucker, C.J. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens. Environ. 1979, 8, 127–150. [Google Scholar] [CrossRef]
- Wiegand, C.L.; Everitt, J.H.; Richardson, A.J. Comparison of multispectral video and SPOT-1 HRV observations for cotton affected by soil salinity. Int. J. Remote Sens. 1992, 13, 1511–1525. [Google Scholar] [CrossRef]
- Tucker, C.J.; Holben, B.N.; Goff, T.E. Intensive forest clearing in Rondonia, Brazil, as detected by satellite remote sensing. Remote Sens. Environ. 1984, 15, 255–261. [Google Scholar] [CrossRef]
- Gitelson, A.A. Relationships between leaf chlorophyll content and spectral reflectance and algorithms for non-destructive chlorophyll assessment in higher plant leaves. J. Plant Physiol. 2003, 160, 271–282. [Google Scholar] [CrossRef] [PubMed]
- Zarco-Tejada, P.J.; Miller, J.R.; Mohammed, G.H.; Noland, T.L.; Sampson, P.H. Vegetation stress detection through chlorophyll a+b estimation and fluorescence effects on hyperspectral imagery. J. Environ. Quality 2002, 31, 1433–1411. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Vina, A.; Ciganda, V.; Rundquist, D.C.; Arkebauer, T.J. Remote estimation of canopy chlorophyll content in crops. Geophys. Res. Lett 2005, 32, L08403. [Google Scholar] [CrossRef]
- Gitelson, A.; Merzlyak, M.N. Quantitative estimation of chlorophyll-a using reflectance spectra: experiments with autumn chestnut and maple leaves. J. Photochem. Photobiol. B: Biol. 1994, 22, 247–252. [Google Scholar] [CrossRef]
- Merzlyak, M.N.; Gitelson, A. Why and what for the leaves are yellow in autumn? On the interpretation of optical spectra of senescing leaves (Acer platanoides L.). J. Plant Physiol. 1995, 145, 315–320. [Google Scholar] [CrossRef]
- Huete, A.; Justice, C.; Van Leeuwen, W. MODIS vegetation index (MOD13) algorithm theoretical basis document. NASA Goddard Space Flight Centre: Greenbelt, MD, USA, 1999. [Google Scholar]
- Pax-Lenney, M.; Woodcock, C.E. The effect of spatial resolution on the ability to monitor the status of agricultural lands. Remote Sens. Environ. 1997, 61, 210–220. [Google Scholar] [CrossRef]
- Ribbes, F.; Toan, T.L. Rice field mapping and monitoring with RADARSAT data. Int. J. Remote Sens. 1999, 20, 745–765. [Google Scholar] [CrossRef]
- Rosenqvist, A. Temporal and spatial characteristics of irrigated rice in JERS-1 L-band SAR data. Int. J. Remote Sens. 1999, 20, 1567–1587. [Google Scholar] [CrossRef]
- Shao, Y.; Fan, X.; Liu, H.; Xiao, J.; Ross, S.; Brisco, B.; Brown, R.; Staples, G. Rice monitoring and production estimation using multitemporal RADARSAT. Remote Sens. Environ. 2001, 76, 310–325. [Google Scholar] [CrossRef]
- Njoku, E.G.; Wilson, W.J.; Yueh, S.H.; Dinardo, S.J.; Li, F.K.; Jackson, T.J.; Lakshmi, V.; Bolten, J. Observations of soil moisture using a passive and active low-frequency microwave airborne sensor during SGP99. IEEE Trans. Geosci. Remote Sens. 2002, 40, 2659–2673. [Google Scholar] [CrossRef]
- Lakhankar, T.; Krakauer, N.; Khanbilvardi, R. Applications of microwave remote sensing of soil moisture for agricultural applications. Int. J. Terraspace Sci. Eng. 2009, 2, 81–91. [Google Scholar]
- Carpenter, G.A.; Gjaja, M.N.; Gopal, S.; Woodcock, C.E. ART neural networks for remote sensing: vegetation classificationfrom Landsat TM and terrain data. IEEE Trans. Geosci. Remote Sens. 1997, 35, 308–325. [Google Scholar] [CrossRef]
- Gopal, S.; Woodcock, C.E.; Strahler, A.H. Fuzzy Neural Network Classification of Global Land Cover from a 1 AVHRR Data Set. Remote Sens. Environ. 1999, 67, 230–243. [Google Scholar] [CrossRef]
- Abuelgasin, A. Change detection using adaptive fuzzy neural networks—Environmental damage assessment after the Gulf War. Remote Sens. Environ. 1999, 70, 208–223. [Google Scholar] [CrossRef]
- Foody, G.M.; Mathur, A. A relative evaluation of multiclass image classification by support vector machines. IEEE Trans. Geosci. Remote Sens. 2004, 42, 1335–1343. [Google Scholar] [CrossRef]
- Berberoglu, S.; Lloyd, C.D.; Atkinson, P.M.; Curran, P.J. The integration of spectral and textural information using neural networks for land cover mapping in the Mediterranean. Comput. Geosci. 2000, 26, 385–396. [Google Scholar] [CrossRef]
- Walter, V. Object-based classification of remote sensing data for change detection. ISPRS J. Photogramm. Remote Sens. 2004, 58, 225–238. [Google Scholar] [CrossRef]
- Aplin, P.; Atkinson, P.M.; Curran, P.J. Fine spatial resolution satellite sensor imagery for land cover mapping in the United Kingdom. Remote Sens. Environ. 1999, 68, 206–216. [Google Scholar] [CrossRef]
- van Laake, P.; Skutsch, M.; McCall, M.K. A Sourcebook of Methods and Procedures for Monitoring and Reporting Anthropogenic Greenhouse Gas Emissions and Removals Caused by Deforestation, Gains and Losses of Carbon Stocks in Forests Remaining Forests, and Forestation; GOFC-GOLD Report Version COP15-1; GOFC-GOLD Project Office, Natural Resources Canada: Alberta, AB, Canada; p. 197.
- Pohl, C.; Van Genderen, J.L. Multisensor image fusion in remote sensing: Concepts, methods and applications. Int. J. Remote Sens. 1998, 19, 823–854. [Google Scholar] [CrossRef]
- Gungor, O.; Shan, J. An optimal fusion approach for optical and SAR images. In Proceedings of the ISPRS Commission VII Mid-term Symposium “Remote Sensing: From Pixels to Processes”, Enschede, The Netherlands, 8–11 May 2006; pp. 111–116.
© 2010 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Ozdogan, M.; Yang, Y.; Allez, G.; Cervantes, C. Remote Sensing of Irrigated Agriculture: Opportunities and Challenges. Remote Sens. 2010, 2, 2274-2304. https://doi.org/10.3390/rs2092274
Ozdogan M, Yang Y, Allez G, Cervantes C. Remote Sensing of Irrigated Agriculture: Opportunities and Challenges. Remote Sensing. 2010; 2(9):2274-2304. https://doi.org/10.3390/rs2092274
Chicago/Turabian StyleOzdogan, Mutlu, Yang Yang, George Allez, and Chelsea Cervantes. 2010. "Remote Sensing of Irrigated Agriculture: Opportunities and Challenges" Remote Sensing 2, no. 9: 2274-2304. https://doi.org/10.3390/rs2092274
APA StyleOzdogan, M., Yang, Y., Allez, G., & Cervantes, C. (2010). Remote Sensing of Irrigated Agriculture: Opportunities and Challenges. Remote Sensing, 2(9), 2274-2304. https://doi.org/10.3390/rs2092274