Estimating Global Cropland Extent with Multi-year MODIS Data
Abstract
:1. Introduction
2. Methods
2.1. Training Data
2.2. MODIS Data
Mean of the 3 least reflective channel 1 (red) composites |
Mean of channel 1 (red) in 3 warmest composites |
Mean of channel 1 (red) in 3 greenest composites |
Mean of the 3 least reflective channel 2 (NIR) composites |
Mean of channel 2 (NIR) in 3 warmest composites |
Mean of channel 2 (NIR) in 3 greenest composites |
Mean of the 3 warmest channel 31 (thermal) composites |
Mean of channel 31 (thermal) in 3 greenest composites |
Mean of the 3 least reflective channel 7 (SWIR) composites |
Mean of channel 7 (SWIR) in 3 warmest composites |
Mean of channel 7 (SWIR) in 3 greenest composites |
Mean of the 3 greenest (NDVI) composites |
Mean of NDVI in 3 warmest composites |
Mean of the 6 least reflective channel 1 (red) composites |
Mean of channel 1 (red) in 6 warmest composites |
Mean of channel 1 (red) in 6 greenest composites |
Mean of the 6 least reflective channel 2 (NIR) composites |
Mean of channel 2 (NIR) in 6 warmest composites |
Mean of channel 2 (NIR) in 6 greenest composites |
Mean of the 6 warmest channel 31 (thermal) composites |
Mean of channel 31 (thermal) in 6 greenest composites |
Mean of the 6 least reflective channel 7 (SWIR) composites |
Mean of channel 7 (SWIR) in 6 warmest composites |
Mean of channel 7 (SWIR) in 6 greenest composites |
Mean of the 6 greenest (NDVI) composites |
Mean of NDVI in 6 warmest composites |
Mean of the 12 least reflective channel 1 (red) composites |
Mean of channel 1 (red) in 12 warmest composites |
Mean of channel 1 (red) in 12 greenest composites |
Mean of the 12 least reflective channel 2 (NIR) composites |
Mean of channel 2 (NIR) in 12 warmest composites |
Mean of channel 2 (NIR) in 12 greenest composites |
Mean of the 12 warmest channel 31 (thermal) composites |
Mean of channel 31 (thermal) in 12 greenest composites |
Mean of the 12 least reflective channel 7 (SWIR) composites |
Mean of channel 7 (SWIR) in 12 warmest composites |
Mean of channel 7 (SWIR) in 12 greenest composites |
Mean of the 12 greenest (NDVI) composites |
Mean of NDVI in 12 warmest composites |
2.3. Classification Tree Algorithm
2.4. Thresholds
Country | FAO Area | FAS Area | % Diff | FAS Threshold | FAO Threshold |
---|---|---|---|---|---|
Argentina | 25,456,125 | 26,711,333 | 4.7% | 42 | 44 |
Bangladesh | 7,996,000 | 12,009,556 | 33.4% | 1 | 10 |
Vietnam | 6,444,438 | 8,815,444 | 26.9% | 12 | 15 |
Philippines | 4,942,625 | 6,745,667 | 26.7% | 10 | 13 |
Egypt | 2,937,875 | 3,294,222 | 10.8% | 16 | 22 |
Nepal | 2,345,625 | 3,335,556 | 29.7% | 14 | 21 |
Turkmenistan | 1,790,000 | 1,979,778 | 9.6% | 51 | 54 |
Tajikistan | 765,750 | 884,111 | 13.4% | 68 | 71 |
2.5 Evaluation
3. Results and Discussion
MODIS Band | As primary metric | As primary or secondary metric |
---|---|---|
Band 1 (Red) | 26.41 | 26.41 |
Band 2 (NIR) | 16.89 | 16.89 |
Band 7 (SWIR) | 9.92 | 9.92 |
NDVI | 31.54 | 53.40 |
Band 31 (Thermal) | 15.24 | 54.82 |
Region Country/Regions | Matching Threshold | Calculated Area (hectares) | FAS PSD Area (hectares) |
---|---|---|---|
India | 35 | 139,841,931 | 138,331,222 |
China | 41 | 113,216,074 | 114,264,444 |
United States | 49 | 100,291,610 | 97,792,333 |
Russia | 43 | 49,301,727 | 48,396,333 |
Brazil | 37 | 41,099,217 | 41,453,222 |
Argentina | 42 | 26,882,240 | 26,711,333 |
Canada | 64 | 22,501,593 | 22,627,556 |
Australia | 75 | 20,308,184 | 20,363,000 |
Africa | 30 | 112,756,008 | 110,901,444 |
Europe | 63 | 92,203,407 | 92,959,111 |
Central Asia | 47 | 78,435,859 | 77,582,777 |
South / East Asia | 20 | 76,919,435 | 77,462,666 |
Latin America | 38 | 24,002,450 | 25,023,444 |
Corn | Rice | Soybeans | Wheat |
---|---|---|---|
Angola | Bangladesh | Argentina | Afghanistan |
Benin | Burma | Bolivia | Algeria |
Brazil | Cambodia | Brazil | Australia |
Colombia | China | Paraguay | Canada |
Congo (Kinshasa) | Colombia | United States | European Union |
Cote d’Ivoire | Guinea | Egypt | |
Ethiopia | India | Iran | |
Ghana | Indonesia | Iraq | |
Kenya | Japan | Kazakhstan | |
North Korea | North Korea | Moldova | |
Malawi | Madagascar | Morocco | |
Mexico | Nepal | Pakistan | |
Moldova | Peru | Russia | |
Mozambique | Philippines | Syria | |
Nepal | Thailand | Tunisia | |
Peru | Vietnam | Turkey | |
Philippines | South Korea | Turkmenistan | |
Serbia | Ukraine | ||
South Africa | Uzbekistan | ||
Tanzania | |||
Togo | |||
Uganda | |||
United States | |||
Zambia | |||
Zimbabwe |
Level of Agreement | Corn | Rice | Soybeans | Wheat |
---|---|---|---|---|
5 of 5 | 85.89 | 58.02 | 86.75 | 62.65 |
At Least 4 of 5 | 66.93 | 46.58 | 69.24 | 55.52 |
At Least 3 of 5 | 50.57 | 40.50 | 55.51 | 49.65 |
At Least 2 of 5 | 33.10 | 34.22 | 41.70 | 42.92 |
At Least 1 of 5 | 19.91 | 25.26 | 27.50 | 32.78 |
Level of Agreement | Rice | Wheat |
---|---|---|
5 of 5 | 20.84 | 73.79 |
At Least 4 of 5 | 19.93 | 57.19 |
At Least 3 of 5 | 15.69 | 41.84 |
At Least 2 of 5 | 10.49 | 26.25 |
At Least 1 of 5 | 4.90 | 10.29 |
4. Conclusion
Acknowledgements
List of Abbreviations:
MODIS | MODerate Resolution Imaging Spectroradiometer |
USDA | United States Department of Agriculture |
CADRE | Crop Condition Data Retrieval and Evaluation |
LACIE | Large Area Crop Inventory Experiment |
AgRISTARS | Agriculture and Resources Inventory Surveys Through Aerospace Remote Sensing |
GLAM | Global Agriculture Monitoring project |
UNFAO | United Nations Food and Agricultural Organization |
GIEWS | Food Security Global Information and Early Warning System |
USAID | United States Agency for International Development |
FEWS | Famine Early Warning System |
MARS | Monitoring Agriculture with Remote Sensing |
GMFS | Global Monitoring of Food Security |
IRSA | Institute of Remote Sensing Applications |
IWMI | International Water Management Institute |
References
- Boatwright, G.O.; Whitehead, V.S. Early warning and crop condition assessment research. IEEE Trans. Geosci. Remote Sens. 1986, 24, 54–64. [Google Scholar] [CrossRef]
- Group on Earth Observations. Report from the Workshop on Developing a Strategy for Global Agricultural Monitoring in the framework of Group on Earth Observations (GEO), 16-18 July 2007, FAO, Rome; GEO: Geneva, Switzerland, 2007. [Google Scholar]
- National Agricultural Statistics Service. Cropland Data Layer; USDA-NASS: Washington, DC, USA, 2010; Available online: www.nass.usda.gov/research/Cropland/SARS1a.htm (accessed on 6 January 2010).
- Wolfe, R.; Roy, D.; Vermote, E. The MODIS land data storage, gridding and compositing methodology: L2 Grid. IEEE Trans. Geosci. Remote Sens. 1998, 36, 1324–1338. [Google Scholar] [CrossRef]
- Vermote, E.F.; El Saleous, N.; Justice, C.O.; Kaufman, Y.J.; Privette, J.L.; Remer, L.; Roger, J.C.; Tanre, D. Atmospheric correction of visible to middle-infrared EOS-MODIS data over land surfaces: Background, operational algorithm and validation. J. Geophys. Res. 1997, 102, 17131–17141. [Google Scholar] [CrossRef]
- Ramankutty, N.; Foley, J.A. Characterizing patterns of global land use: An analysis of global croplands data. Glob. Biogeochem. Cycles 1998, 12, 667–685. [Google Scholar] [CrossRef]
- Ramankutty, N.; Evan, A.T.; Monfreda, C.; Foley, J.A. Farming the Planet: Geographic distribution of global agriculture in the year 2000. Glob. Biogeochem. Cycles 2008, 22, B1003. [Google Scholar]
- Loveland, T.R.; Reed, B.C.; Brown, J.F.; Ohlen, D.O.; Zhu, Z.; Yang, L.; Merchant, J.W. Development of a global land cover characteristics database and IGBP DISCover from 1 km AVHRR data. Int. J. Remote Sens. 2000, 21, 1303–1330. [Google Scholar] [CrossRef]
- Hansen, M.C.; DeFries, R.S.; Townshend, J.R.G.; Sohlberg, R. Global land cover classification at 1 km spatial resolution using a classification tree approach. Int. J. Remote Sens. 2000, 21, 1331–1364. [Google Scholar] [CrossRef]
- Friedl, M.A.; McIver, D. K.; Hodges, J.C.F.; Zhang, X.Y.; Muchoney, D.; Strahler, A.H.; Woodcock, C.E.; Gopal, S.; Schneider, A.; Cooper, A.; Baccini, A.; Gao, F.; Schaaf, C. Global land cover mapping from MODIS: Algorithms and early results. Remote Sens. Environ. 2002, 83, 287–302. [Google Scholar] [CrossRef]
- Bartholomé, E.; Belward, A.S. GLC2000: A new approach to global land cover mapping from earth observation data. Int. J. Remote Sens. 2005, 26, 1959–1977. [Google Scholar] [CrossRef]
- Arino, O.; Leroy, M.; Ranera, F.; Gross, D.; Bicheron, P.; Nino, F.; Brockman, C.; Defourny, P.; Vancutsem, C.; Achard, F.; Durieux, L.; Bourg, L.; Latham, J.; Di Gregorio, A.; Witt, R.; Herold, M.; Sambale, J.; Plummer, S.; Weber, J.-L.; Goryl, P.; Houghton, N. GlobCover—A global land cover service with MERIS. In Proceedings of ‘Envisat Symposium 2007’, Montreux, Switzerland, April 2007.
- Thenkabail, P.S.; Biradar, C.M.; Noojipady, P.; Dheeravath, V.; Li, Y.J.; Velpuri, M.; Gumma, M.; Reddy, G.P.O.; Turral, H.; Cai, X.L.; Vithanage, J.; Schull, M.; Dutta, R. Global irrigated area map (GIAM), derived from remote sensing, for the end of the last millennium. Int. J. Remote Sens. 2009, 30, 3679–3733. [Google Scholar] [CrossRef]
- Chandrashekhar, M.; Thenkabail, P.S.; Noojipady, P.; Li, Y.; Dheeravath, V.; Turral, H.; Velpuri, M.; Gumma, M.K.; Gangalakunta, O.B.P.; Cai, X.L.; Xiao, X.; Schull, M.A.; Alankara, R.D.; Gunasinghe, S.; Mohideen, S. A global map of rainfed cropland areas (GMRCA) at the end of the last millennium using remote sensing. Int. J. Appl. Earth Obs. Geoinf. 2009, 11, 114–129. [Google Scholar]
- Tucker, C.J.; Grant, D.; Dykstra, J. NASA’s global orthorectified Landsat data set. Photogramm. Eng. Remote Sensing 2004, 70, 313–322. [Google Scholar] [CrossRef]
- Africover. Land Cover Mapping Based on Satellite Remote Sensing; Food and Agriculture Organization of the United Nations: Roma, Italy, 2002; Available online: http://www.africover.org/download/documents/Short_Project_description_en.pdf (accessed on 1 March 2010).
- Homer, C.; Dewitz, J.; Fry, J.; Coan, M.; Hossain, N.; Larson, C.; Herold, N.; McKerrow, A.; VanDriel, J.N.; Wickham, J. Completion of the 2001 National Land Cover Database for the Conterminous United States. Photogramm. Eng. Remote Sensing 2007, 73, 337–341. [Google Scholar]
- Fisette, T.; Chenier, R.; Maloley, M.; Gasser, PY.; Huffman, T.; White, L.; Ogston, R.; Elgarawany, A. Methodology for a Canadian agricultural land cover classification. In Proceedings of 1st International Conference on Object-based Image Analysis, Salzburg, Austria, July 2006; In International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. 2006; Volume XXXVI 4/C42. [Google Scholar]
- Fairbanks, D.H.K.; Thompson, M.W.; Vink, D.E.; Newby, T.S.; van den Berg, H.M.; Everard, D.A. The South African land-cover characteristics database: a synopsis of the landscape. South Afr. J. Sci. 2000, 96, 69–82. [Google Scholar]
- Buttner, G.; Feranec, J.; Jaffrain, G.; Mari, L.; Maucha, G.; Soukup, T. The CORINE Land Cover 2000 Project. EARSeL eProceedings 2004, 3, 331–346. [Google Scholar]
- Vermote, E.F.; El Saleous, N.; Justice, C.O. Atmospheric correction of MODIS data in the visible to middle infrared: First results. Remote Sens. Environ. 2002, 83, 97–111. [Google Scholar] [CrossRef]
- Carroll, M.; Townshend, J.; Hansen, M.; DiMiceli, C.; Sohlberg, R.; Wurster, K. Vegetative cover conversion and vegetation continuous Fields. In Land Remote Sensing and Global Environmental Change; NASA’s Earth Observing System and the Science of ASTER and MODIS Series; Ramachandran, B., Justice, C.O., Abrams, M., Eds.; Springer-Verlag: New York, NY, USA, 2010. [Google Scholar]
- Holben, B. Characteristics of maximum-value composite images from temporal AVHRR data. Int. J. Remote Sens. 1986, 7, 1417–1434. [Google Scholar] [CrossRef]
- Hansen, M.C.; DeFries, R.S.; Townshend, J.R.G.; Carroll, M.; Dimiceli, C.; Sohlberg, R.A. Global percent tree cover at a spatial resolution of 500 meters: First results of the MODIS vegetation continuous fields algorithm. Earth Interactions 2003, 7, 1–15. [Google Scholar] [CrossRef]
- Venables, W.N.; Ripley, B.D. Modern Applied Statistics with S-Plus; Springer-Verlag: New York, NY, USA, 1994. [Google Scholar]
- Breiman, L. Bagging predictors. Mach. Learn. 1996, 24, 123–140. [Google Scholar] [CrossRef]
- Reynolds, C.A. Input Data Sources, Climate Normals, Crop Models, and Data Extraction Routines Utilized by PECAD; USDA: Washington, DC, USA, 2001; Available online: www.pecad.fas.usda.gov/cropexplorer/datasources.cfm (accessed on 14 October 2009).
- FAOSTAT. FAO Statistical Databases; Food and Agricultural Organization of the United Nations: Rome, Italy, 2001. [Google Scholar]
- Galford, G.L.; Mustard, J.F.; Melillo, J.; Gendrin, A.; Cerri, C.C.; Cerri, E.P. Wavelet analysis of MODIS time series to detect expansion and intensification of row-crop agriculture in Brazil. Remote Sens. Environ. 2008, 112, 576–587. [Google Scholar] [CrossRef]
- Carroll, M.L.; Townshend, J.R.; DiMiceli, C.M.; Noojipady, P.; Sohlberg, R.A. A new global rater water mask at 250m resolution. Int. J. Dig. Earth 2009, 2, 291–308. [Google Scholar] [CrossRef]
- Ioffe, G.; Nefedova, T.; Zaslavsky, I. From spatial continuity to fragmentation: The case of Russian farming. Ann. Assoc. Amer. Geographers 2004, 94, 913–943. [Google Scholar]
- ROSSTAT. Regions of Russia: Social and Economic Indicators; Russian Federal State Statistics Service: Moscow, Russian, 2008. [Google Scholar]
- Becker-Reshef, I.; Justice, C.O.; Sullivan, M.; Vermote, E.; Tucker, C.; Anyamba, A.; Small, J.; Pak, E.; Masouka, E.; Schmaltz, J.; Hansen, M.; Pittman, K.; Birkett, C.; Willians, D.; Reynolds, C.; Doorn, B. Monitoring global croplands with coarse resolution earth observations: The Global Agriculture Monitoring (GLAM) project. Remote Sensing 2010, 2, 1589–1609. [Google Scholar] [CrossRef]
- Wardlow, B.D.; Egbert, S.L.; Kastens, J.H. Analysis of time-series MODIS 250 m vegetation index data for crop classification in the U.S. Central Great Plains. Remote Sens. Environ. 2007, 108, 290–310. [Google Scholar] [CrossRef]
- Chang, J.; Hansen, M.C.; Pittman, K.; Carroll, M.; DiMiceli, C. Corn and soybean mapping in the United States using MODIS time-series data sets. Agronomy J. 2007, 99, 1654–1664. [Google Scholar] [CrossRef]
© 2010 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Pittman, K.; Hansen, M.C.; Becker-Reshef, I.; Potapov, P.V.; Justice, C.O. Estimating Global Cropland Extent with Multi-year MODIS Data. Remote Sens. 2010, 2, 1844-1863. https://doi.org/10.3390/rs2071844
Pittman K, Hansen MC, Becker-Reshef I, Potapov PV, Justice CO. Estimating Global Cropland Extent with Multi-year MODIS Data. Remote Sensing. 2010; 2(7):1844-1863. https://doi.org/10.3390/rs2071844
Chicago/Turabian StylePittman, Kyle, Matthew C. Hansen, Inbal Becker-Reshef, Peter V. Potapov, and Christopher O. Justice. 2010. "Estimating Global Cropland Extent with Multi-year MODIS Data" Remote Sensing 2, no. 7: 1844-1863. https://doi.org/10.3390/rs2071844
APA StylePittman, K., Hansen, M. C., Becker-Reshef, I., Potapov, P. V., & Justice, C. O. (2010). Estimating Global Cropland Extent with Multi-year MODIS Data. Remote Sensing, 2(7), 1844-1863. https://doi.org/10.3390/rs2071844