SnowCloudHydro—A New Framework for Forecasting Streamflow in Snowy, Data-Scarce Regions
Abstract
:1. Introduction
2. Materials and Methods
- (i)
- If consecutive cloudy days occur between two snow-covered days, then the cloudy days are interpreted as snow-covered;
- (ii)
- If consecutive cloudy days occur between two non-snow-covered days, then the cloudy days are interpreted as non-snow-covered;
- (iii)
- If consecutive cloudy days occur between an antecedent snow-covered day and a subsequent non-snow-covered day, then the cloudy days are interpreted as non-snow-covered; and
- (iv)
- If consecutive cloudy days occur between an antecedent non-snow-covered day and a subsequent snow-covered day, then the cloudy days are interpreted as snow-covered.
3. Results
3.1. Snow Cover Frequency Calculations Using SnowCloudMetrics
3.2. SnowCloudHydro
3.3. Users’ Assessment of SnowCloud
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
- You have read the above information
- You voluntarily agree to participate
- You understand that participation is voluntary, and you can stop at any time
- You understand there is no monetary compensation for your participation
- Extremely useful (1)
- Moderately useful (2)
- Slightly useful (3)
- Slightly useless (4)
- Moderately useless (5)
- Not useful at all (6)
- Extremely useful (1)
- Moderately useful (2)
- Slightly useful (3)
- Slightly useless (4)
- Moderately useless (5)
- Not useful at all (6)
- Highly experienced (1)
- Moderately experienced (2)
- Slightly experienced (3)
- Learning (4)
- Minimal experience (5)
- Inexperienced (6)
- Highly experienced (1)
- Moderately experienced (2)
- Slightly experienced (3)
- Learning (4)
- Minimal experience (5)
- Inexperienced (6)
- Entirely cloud-based (1)
- Mostly cloud (2)
- More cloud than download (3)
- More download than cloud (4)
- Mostly download (5)
- Download all data (6)
- Strongly agree (1)
- Agree (2)
- Somewhat agree (3)
- Somewhat disagree (4)
- Disagree (5)
- Strongly disagree (6)
- Extremely likely (1)
- Moderately likely (2)
- Slightly likely (3)
- Slightly unlikely (4)
- Moderately unlikely (5)
- Extremely unlikely (6)
- Extremely likely (1)
- Moderately likely (2)
- Slightly likely (3)
- Slightly unlikely (4)
- Moderately unlikely (5
- Extremely unlikely (6)
References
- Dozier, J. Mountain hydrology, snow color, and the fourth paradigm. Eos Trans. Am. Geophys. Union 2011, 92, 373. [Google Scholar] [CrossRef]
- Fritze, H.; Stewart, I.T.; Pebesma, E. Shifts in Western North American Snowmelt Runoff Regimes for the Recent Warm Decades. J. Hydrometeorol. 2011, 12, 989–1006. [Google Scholar] [CrossRef]
- Yucel, I.; Güventürk, A.; Sen, O.L. Climate change impacts on snowmelt runoff for mountainous transboundary basins in eastern Turkey. Int. J. Climatol. 2014. [Google Scholar] [CrossRef]
- Nogués-Bravo, D.; Araújo, M.B.; Errea, M.P.; Martínez-Rica, J.P. Exposure of global mountain systems to climate warming during the 21st Century. Glob. Environ. Chang. 2007, 17, 420–428. [Google Scholar] [CrossRef]
- Stewart, I.T. Changes in snowpack and snowmelt runoff for key mountain regions. Hydrol. Process. 2009, 23, 78–94. [Google Scholar] [CrossRef]
- Stewart, I.T.; Cayan, D.R.; Dettinger, M.D. Changes toward earlier streamflow timing across western North America. J. Clim. 2005, 18, 1136–1155. [Google Scholar] [CrossRef]
- Smerdon, B.D.; Allen, D.M.; Grasby, S.E.; Berg, M.A. An approach for predicting groundwater recharge in mountainous watersheds. J. Hydrol. 2009, 365, 156–172. [Google Scholar] [CrossRef]
- Berghuijs, W.R.; Woods, R.A.; Hrachowitz, M. A precipitation shift from snow towards rain leads to a decrease in streamflow. Nat. Clim. Chang. 2014, 4, 583–586. [Google Scholar] [CrossRef] [Green Version]
- Meixner, T.; Manning, A.H.; Stonestrom, D.A.; Allen, D.M.; Ajami, H.; Blasch, K.W.; Brookfield, A.E.; Castro, C.L.; Clark, J.F.; Gochis, D.J.; et al. Implications of projected climate change for groundwater recharge in the western United States. J. Hydrol. 2016, 534, 124–138. [Google Scholar] [CrossRef] [Green Version]
- Barnett, T.P.; Adam, J.C.; Lettenmaier, D.P. Potential impacts of a warming climate on water availability in snow-dominated regions. Nature 2005, 438, 303–309. [Google Scholar] [CrossRef] [PubMed]
- Wada, Y.; Bierkens, M.F.P. Sustainability of global water use: Past reconstruction and future projections. Environ. Res. Lett. 2014, 9, 104003. [Google Scholar] [CrossRef]
- Gosling, S.N.; Arnell, N.W. A global assessment of the impact of climate change on water scarcity. Clim. Chang. 2016, 134, 371–385. [Google Scholar] [CrossRef]
- Nolin, A.W. Perspectives on Climate Change, Mountain Hydrology, and Water Resources in the Oregon Cascades, USA. Mt. Res. Dev. 2012, 32, S35–S46. [Google Scholar] [CrossRef]
- Jaeger, W.K.; Plantinga, A.J.; Chang, H.; Dello, K.; Grant, G.; Hulse, D.; McDonnell, J.J.; Lancaster, S.; Moradkhani, H.; Morzillo, A.T.; et al. Toward a formal definition of water scarcity in natural-human systems. Water Resour. Res. 2013, 49, 4506–4517. [Google Scholar] [CrossRef] [Green Version]
- Bales, R.C.; Molotch, N.P.; Painter, T.H.; Dettinger, M.D.; Rice, R.; Dozier, J. Mountain hydrology of the western United States. Water Resour. Res. 2006, 42, W08432. [Google Scholar] [CrossRef]
- Yu, J.; Zhang, G.; Yao, T.; Xie, H.; Zhang, H.; Ke, C.; Yao, R. Developing daily cloud-free snow composite products from MODIS Terra–Aqua and IMS for the Tibetan plateau. IEEE Trans. Geosci. Remote Sens. 2016, 54, 2171–2180. [Google Scholar] [CrossRef]
- AghaKouchak, A.; Farahmand, A.; Melton, F.S.; Teixeira, J.; Anderson, M.C.; Wardlow, B.D.; Hain, C.R. Remote sensing of drought: Progress, challenges and opportunities. Rev. Geophys. 2015, 53, 452–480. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Li, H.; Hao, X.; Huang, X.; Hou, J.; Che, T.; Dai, L.; Liang, T.; Huang, C.; Li, H. Remote sensing for snow hydrology in China: challenges and perspectives. J. Appl. Remote Sens. 2014, 8, 84687. [Google Scholar] [CrossRef] [Green Version]
- Nolin, A.W.; Sproles, E.A.; Crumley, R.L.; Wilson, A.; Mar, E.; van de Kerk, M.; Prugh, L. Cloud-based computing and applications of new snow metrics for societal benefit. In Proceedings of the American Geophysical Fall Meeting; American Geophysical Union: New Orleans, LA, USA, 2017. [Google Scholar]
- Xu, X.; Li, J.; Tolson, B.A. Progress in integrating remote sensing data and hydrologic modeling. Prog. Phys. Geogr. 2014, 38, 464–498. [Google Scholar] [CrossRef]
- Sproles, E.A.; Kerr, T.; Nelson, C.O.; Aspe, D.L. Developing a Snowmelt Forecast Model in the Absence of Field Data. Water Resour. Manag. 2016, 30. [Google Scholar] [CrossRef]
- Huang, X.; Deng, J.; Wang, W.; Feng, Q.; Liang, T. Impact of climate and elevation on snow cover using integrated remote sensing snow products in Tibetan Plateau. Remote Sens. Environ. 2017, 190, 274–288. [Google Scholar] [CrossRef]
- Ma, Y.; Wu, H.; Wang, L.; Huang, B.; Ranjan, R.; Zomaya, A.; Jie, W. Remote sensing big data computing: Challenges and opportunities. Futur. Gener. Comput. Syst. 2015, 51, 47–60. [Google Scholar] [CrossRef] [Green Version]
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- Raven, P.H. Science, Sustainability, and the Human Prospect. Science 2002, 297, 954–958. [Google Scholar] [CrossRef] [PubMed]
- Beier, P.; Hansen, L.J.; Helbrecht, L.; Behar, D. A How-to Guide for Coproduction of Actionable Science. Conserv. Lett. 2016. [Google Scholar] [CrossRef]
- Yang, C.; Goodchild, M.; Huang, Q.; Nebert, D.; Raskin, R.; Xu, Y.; Bambacus, M.; Fay, D. Spatial cloud computing: How can the geospatial sciences use and help shape cloud computing? Int. J. Digit. Earth 2011, 4, 305–329. [Google Scholar] [CrossRef]
- Granell, C.; Havlik, D.; Schade, S.; Sabeur, Z.; Delaney, C.; Pielorz, J.; Usländer, T.; Mazzetti, P.; Schleidt, K.; Kobernus, M. Future Internet technologies for environmental applications. Environ. Model. Softw. 2016, 78, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Nativi, S.; Mazzetti, P.; Santoro, M.; Papeschi, F.; Craglia, M.; Ochiai, O. Big Data challenges in building the Global Earth Observation System of Systems. Environ. Model. Softw. 2015, 68, 1–26. [Google Scholar] [CrossRef]
- Foster, I. Globus Online: Accelerating and democratizing science through cloud-based services. IEEE Internet Comput. 2011, 15, 70–73. [Google Scholar] [CrossRef]
- Sultan, N. Cloud computing: A democratizing force? Int. J. Inf. Manag. 2013, 33, 810–815. [Google Scholar] [CrossRef]
- Junta de Vigilancia del Rio Elqui y sus Afluentes. Estimated Inflows in La Laguna Reservoir; Junta de Vigilancia del Rio Elqui y sus Afluentes: La Serena, Chile, 2016. [Google Scholar]
- United States Geological Survey US Geological Survey National Water Information System. Available online: http://waterdata.usgs.gov/nwis/ (accessed on 10 January 2017).
- Sanmiguel-Vallelado, A.; Morán-Tejeda, E.; Alonso-González, E.; López-Moreno, J.I. Effect of snow on mountain river regimes: an example from the Pyrenees. Front. Earth Sci. 2017, 11, 515–530. [Google Scholar] [CrossRef] [Green Version]
- Sawicz, K.; Wagener, T.; Sivapalan, M.; Troch, P.A.; Carrillo, G. Catchment classification: empirical analysis of hydrologic similarity based on catchment function in the eastern USA. Hydrol. Earth Syst. Sci. 2011, 15, 2895–2911. [Google Scholar] [CrossRef] [Green Version]
- Hall, D.K.; Riggs, G.A. MODIS/Terra Snow Cover Daily L3 Global 500m Grid, Version 6; NASA National Snow and Ice Data Center Distributed Archive Center: Boulder, CO, USA, 2016; Available online: https://nsidc.org/data/mod10a1 (accessed on 22 May 2018). [CrossRef]
- Beven, K.; Binley, A. The Future of Distributed Models: Model Calibration and Uncertainty Prediction. Hydrol. Process. 1992, 6, 279–298. [Google Scholar] [CrossRef]
- Nash, J.E.; Sutcliffe, J.V. River flow forecasting through conceptual models part I: a discussion of principles. J. Hydrol. 1970, 10, 282–290. [Google Scholar] [CrossRef]
- Dingman, S.L. Physical Hydrology; Prentice Hall: Upper Saddle River, NJ, USA, 2002; ISBN 0130996955 9780130996954. [Google Scholar]
- Kirchner, J.W. Getting the right answers for the right reasons: Linking measurements, analyses, and models to advance the science of hydrology. Water Resour. Res. 2006, 42. [Google Scholar] [CrossRef] [Green Version]
- MathWorks. The MathWorks MATLAB and Statistics Toolbox Release 2013a; MathWorks: Natick, MA, USA, 2013. [Google Scholar]
- Sproles, E. SnowCloudHydro; Github Repository: Corvallis, OR, USA, 2017. Available online: https://github.com/MountainHydroClimate/SnowCloudHydro (accessed on 22 May 2018). [CrossRef]
- NASA—Applied Sciences Program Water Resources Program|Applied Sciences Website. Available online: https://appliedsciences.nasa.gov/programs/water-resources-program (accessed on 22 May 2018).
La Laguna | John Day | Aragón | |
---|---|---|---|
Latitude | 30°S | 44°N | 42°N |
Mean T (°C) | −4.9 | −1.3 | 9.5 |
Min Elevation (m) | 3135 | 933 | 794 |
Max Elevation (m) | 6200 | 2733 | 2858 |
Average Precipitation (mm year−1) | 250 | 600 | 800 |
Mean SCF | 0.33 | 0.27 | 0.27 |
Runoff Ratio (mm/mm) | 0.41 | 0.26 | 0.77 |
Area (km2) | 568 | 1036 | 242 |
Watershed | Parameter | GLUE | Non-Linear Least Squares |
---|---|---|---|
La Laguna | a | 5.46 | 4.21 |
b | 3.98 | 2.96 | |
c | 0.75 | 0.74 | |
d | 0.09 | 0.05 | |
NSE | 0.83 | 0.87 | |
R2 | 0.83 | 0.88 | |
John Day River | a | 21.94 | 22.18 |
b | 1.74 | 1.99 | |
c | 0.13 | 0.11 | |
d | 0.25 | 0.40 | |
NSE | 0.50 | 0.52 | |
R2 | 0.50 | 0.52 | |
Río Aragón | a | 38.42 | 111.26 |
b | 3.64 | 5.45 | |
c | 0.12 | 0.13 | |
d | 0.59 | 0.61 | |
NSE | 0.18 | 0.21 | |
R2 | 0.19 | 0.22 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sproles, E.A.; Crumley, R.L.; Nolin, A.W.; Mar, E.; Lopez Moreno, J.I. SnowCloudHydro—A New Framework for Forecasting Streamflow in Snowy, Data-Scarce Regions. Remote Sens. 2018, 10, 1276. https://doi.org/10.3390/rs10081276
Sproles EA, Crumley RL, Nolin AW, Mar E, Lopez Moreno JI. SnowCloudHydro—A New Framework for Forecasting Streamflow in Snowy, Data-Scarce Regions. Remote Sensing. 2018; 10(8):1276. https://doi.org/10.3390/rs10081276
Chicago/Turabian StyleSproles, Eric A., Ryan L. Crumley, Anne W. Nolin, Eugene Mar, and Juan Ignacio Lopez Moreno. 2018. "SnowCloudHydro—A New Framework for Forecasting Streamflow in Snowy, Data-Scarce Regions" Remote Sensing 10, no. 8: 1276. https://doi.org/10.3390/rs10081276
APA StyleSproles, E. A., Crumley, R. L., Nolin, A. W., Mar, E., & Lopez Moreno, J. I. (2018). SnowCloudHydro—A New Framework for Forecasting Streamflow in Snowy, Data-Scarce Regions. Remote Sensing, 10(8), 1276. https://doi.org/10.3390/rs10081276