Operational Monitoring of the Desert Locust Habitat with Earth Observation: An Assessment
Abstract
:1. Introduction
2. Material
2.1. Study Area
2.2. Satellite Data and Reference Datasets
Zone | Row-Path | Date Landsat | Dekade DGM | Veg. Area (ha) | Veg. Area (%) |
---|---|---|---|---|---|
Atar | 204-046 | 2010/02/20 | 2010/02/11 | 4027 | 0.12 |
2010/11/19 | 2010/11/11 | 57,777 | 1.71 | ||
Tikjikja | 202-048 | 2010/01/21 | 2010/01/21 | 150,388 | 4.43 |
2009/07/29 | 2009/08/01 | 176,496 | 5.29 | ||
Aleg | 204-048 | 2010/02/20 | 2010/02/11 | 234,880 | 7.01 |
2010/11/19 | 2010/11/11 | 1,273,143 | 37.30 | ||
Nema | 199-049 | 2010/02/17 | 2010/02/21 | 63,278 | 1.91 |
2009/10/12 | 2009/10/11 | 1,780,856 | 53.99 |
3. Methods
3.1. Traditional Accuracy Assessment
3.2. Effect of the Spatial Resolution on the Accuracy
3.2.1. The Pareto Boundary
3.2.2. Habitat Structure
3.3. End-User Survey
4. Results
4.1. Accuracy Assessment
Zone | Season | ED (m/ha) | OE (%) | CE (%) | F-Score | OA (%) | Kappa |
---|---|---|---|---|---|---|---|
Atar | Dry | 273 | 67.8 | 75.3 | 0.280 | 99.8 | 0.278 |
Rainy | 308 | 72.3 | 71.8 | 0.279 | 97.4 | 0.267 | |
Tikjikja | Dry | 247 | 62.7 | 73.8 | 0.307 | 96.4 | 0.290 |
Rainy | 200 | 61.9 | 54.4 | 0.415 | 93.9 | 0.384 | |
Aleg | Dry | 224 | 63.7 | 49.3 | 0.423 | 92.6 | 0.384 |
Rainy | 167 | 41.5 | 29.0 | 0.641 | 74.2 | 0.443 | |
Nema | Dry | 261 | 68.1 | 73.1 | 0.291 | 96.9 | 0.276 |
Rainy | 86 | 9.7 | 16.5 | 0.867 | 82.7 | 0.620 |
4.2. End-User Assessment
5. Discussion
6. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Collett, M.; Despland, E.; Simpson, S.J.; Krakauer, D.C. Spatial scales of desert locust gregarization. Proc. Natl. Acad. Sci. USA 1998, 95, 13052–13055. [Google Scholar] [CrossRef] [PubMed]
- Steedman, A. Locust Handbook; Institute, Overseas development Natural Resources: London, UK, 1988. [Google Scholar]
- Brader, L.; Djibo, H.; Faye, F.G.; Ould Babah, M.A.; Ghaout, S.; Lazar, P.M.; Nguala, M. Towards a More Effective Response to Desert Locusts and Their Impacts on Food Security, Livelihood and Poverty. Independent Multilateral Evaluation of the 2003–2005 Desert Locust Campaign; Food and Agriculture Organization (FAO): Rome, Italy, 2006. [Google Scholar]
- Belayneh, Y.T. Acridid pest management in the developing world: A challenge to the rural population, a dilemma to the international community. J. Orthoptera Res. 2005, 14, 187–195. [Google Scholar] [CrossRef]
- Uvarov, B.P. Grasshoppers and Locust; Cambridge University Press: Cambridge, UK, 1966. [Google Scholar]
- Lecoq, M.; Mestre, J. La Surveillance des Sautériaux du Sahel; CIRAD/PRIFAS: Montpellier, France, 1988; Volume 2, p. 32. [Google Scholar]
- Roffey, J.; Popov, G. Environmental and behavioural processes in a desert locust outbreak. Nature 1968, 219, 446–450. [Google Scholar] [CrossRef]
- Hay, S. Remote-sensing and disease control: Past, present and future. Trans. R. Soc. Trop. Med. Hyg. 1997, 91, 105–106. [Google Scholar] [CrossRef]
- Duranton, J.F.; Lecoq, M. Le Criquet Pèlerin au Sahel; Ministère des Affaires Étrangères des Pays-Bas et CIRAD/PRIFAS: Montpellier, France, 1990; Volume 6, p. 84.
- Popov, G.B. Etude Écologique des Biotopes du Criquet pèlerin Schistocerca Gregaria (Forskål, 1775) en Afrique Nord Occidentale. Mise en Évidence et Description des Unités Territoriales Écologiquement Homogènes; CIRAD-PRIFAS: Montpellier, France, 1991; p. 744. [Google Scholar]
- Elliott, C.C.H. FAO’s Perspective on Migratory Pests; Plant Production and Protection Division (AGPP), Food and Agriculture Organization (FAO): Rome, Italy, 1999. [Google Scholar]
- Popov, G.B. Ecological Studies on Oviposition by Swarms of the Desert Locust (Schistocerca Gregaria Forskal) in Eastern Africa; Anti-Locust Research Center: London, UK, 1958. [Google Scholar]
- Uvarov, B.P. The aridity factor in the ecology of desert locust and grasshoppers of the old world. In Arid Zone Research; UNESCO: Paris, France, 1957; Volume 8, pp. 164–198. [Google Scholar]
- Noy-Meir, A. Desert ecosystems: Environment and producers. Annu. Rev. Ecol. Syst. 1973, 4, 25–51. [Google Scholar] [CrossRef]
- Bennet, L. The development and termination of the 1968 plague of the Desert Locust Scistocerca gregaria (Forksal) (Orthoptera, Acrididae). Bull. Entomol. Res. 1976, 66, 511–552. [Google Scholar] [CrossRef]
- Cressman, K. Dynamic Greenness Maps, a Brief Report on Usage for Desert Losut Early Warning; Food and Agriculture Organization (FAO): Rome, Italy, 2012. [Google Scholar]
- Kibasa, R. Use of SPOT 5 Image to Identify Presence of Locusts; International Institute for Geoinformation Science and Earth Observation: Enschede, The Netherlands, 2006. [Google Scholar]
- Hielkema, J. Satellite environmental monitoring for migrant pest forecasting by FAO: The ARTEMIS system. Philos. Trans. R. Soc. B Biol. Sci. 1990, 328, 705–717. [Google Scholar] [CrossRef]
- Pedgley, D.E. Testing Feasibility of Detecting Locust Breeding Sites by Satellite. Final Report to NASA on ERTS-1, Experiment; COPR: London, UK, 1973. [Google Scholar]
- Hielkema, J. Application of Landsat Data in Desert Locust Survey and Control; Food and Agriculture Organization (FAO): Rome, Italy, 1977. [Google Scholar]
- Sinha, P.P.; Chandra, S. Visual analysis of land satellite imageries with reference to growthand decay of vegetation in Western Rajasthan. Plant Prot. Bull. 1987, 39, 29–31. [Google Scholar]
- Hielkema, J.U.; Roffey, J.; Tucker, C.J. Assessment of ecological conditions associated with the 1980/81 desert locust plague upsurge in West Africa using environmental satellite data. Int. J. Remote Sens. 1986, 7, 1609–1622. [Google Scholar] [CrossRef]
- Tappan, G.G.; Moore, D.G.; Knausenberger, W.I. Monitoring grasshopper an locust habitats in Sahelian Africa using GIS and remote sensing technology. Int. J. Geogr. Inf. Syst. 1991, 5, 123–135. [Google Scholar] [CrossRef]
- Despland, E.; Rosenberg, J.; Simpson, S.J. Landscape structure and locust swarming : A satellite’s eye view. Ecography 2004, 3, 381–391. [Google Scholar] [CrossRef]
- Cherlet, M.; Mathoux, P.; Bartholomé, E.; Defourny, P. SPOT-VEGETATION contribution to Desert Locust habitat monitoring. In Proceedings of the VEGETATION 2000 Conference, Lake Maggiore, Italy, 3–6 April 2000; pp. 247–257.
- Ceccato, P. Operational early warning system using SPOT-VGT and TERRA-MODIS to predict desert locust outbreaks. In Proceedings of the 2nd VEGETATION International Users Conference, Antwerp, Belgium, 24–26 March 2005; pp. 24–26.
- Huete, A.R. Soil influence in remotely sensed vegetation canopy spectra. In Introduction to the Physics and Techniques of Remote Sensing; Asrar, G., Ed.; Wiley-Interscience: New York, NY, USA, 1987; pp. 107–141. [Google Scholar]
- Gutman, G.G. On the use of long-term global data of land reflectance and vegetation indexes derived from the advanced very high resolution radiometer. J. Geophys. Res. 1999, 104, 6141–6255. [Google Scholar]
- Holben, B. Characteristics of maximum-value composite images from temporal AVHRR data. Int. J. Remote Sens. 1986, 7, 1417–1434. [Google Scholar] [CrossRef]
- Pekel, J.F.; Ceccato, P.; Vancutsem, C.; Cressman, K.; Vanbogaert, E.; Defourny, P. Development and Application of Multi-Temporal Colorimetric Transformation to Monitor Vegetation in the Desert Locust Habitat. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2010, 4, 318–326. [Google Scholar] [CrossRef]
- Ceccato, P.; Gobron, N.; Flasse, S.; Pinty, B.; Tarantola, S. Designing a spectral index to estimate vegetation water content from remote sensing data (Part 1: Theoretical approach). Remote Sens. Environ. 2002, 82, 188–197. [Google Scholar] [CrossRef]
- Pekel, J.F.; Cressman, K.; Ceccato, P.; Vancutsem, C.; van Bogaert, E.; Defourny, P. Development and application of multi-temporal colorimetric transformation to monitor vegetation in the desert locust habitat. In Proceedings of the MultiTemp 2009—The fifth International Workshop on the Analysis of Multi-Temporal Remote Sensing Images, Mistic, CT, USA, 28–30 July 2009.
- Vancutsem, C.; Pekel, J.F.; Bogaert, P.; Defourny, P. Mean compositing, an alternative strategy for producing temporal syntheses. Concepts and performance assessment for SPOT VEGETATION time series. Int. J. Remote Sens. 2007, 28, 5123–5141. [Google Scholar] [CrossRef]
- Renier, C.; Waldner, F.; Jacques, D.C.; Babah Ebbe, M.A.; Cressman, K.; Defourny, P. A Dynamic Vegetation Senescence Indicator for Near-Real-Time Desert Locust Habitat Monitoring with MODIS. Remote Sens. 2015, 7, 7545–7570. [Google Scholar] [CrossRef]
- Ozer, P. Les lithomÉtÉores en rÉgion sahÉlienne: Un Indicateur Climatique de la dÉsertification. Ph.D. Thesis, Université de Liège, Liège, Belgium, 2000. [Google Scholar]
- Thys, E.; Pinzon, J.E.; Brown, M.E.; Slayback, D.A. Age and sex composition of small ruminants at Nouakchott markets, Mauritania. Small Rumin. Res. 1996, 20, 1133–1135. [Google Scholar] [CrossRef]
- Thiam, A. The causes of spatial pattern of land degradation risk in southern Mauritania using multitemporal AVHRR-NDVI imagery and field data. Land Degrad. Dev. 2003, 14, 133–142. [Google Scholar] [CrossRef]
- Niang, A.J.; Ozer, A.; Ozer, P. Fifty years of landscape evolution in Southwestern Mauritania by means of aerial photos. J. Arid Environ. 2008, 72, 97–107. [Google Scholar] [CrossRef]
- Ould Ahmedou, C.A.; Yasuda, H.; Wang, K.; Hattori, K. Characteristics of precipitation in northern Mauritania and its links with sea surface temperature. J. Arid Environ. 2008, 72, 2243–2250. [Google Scholar] [CrossRef]
- Boschetti, L.; Flasse, S.; Brivio, P. Analysis of the conflict between omission and commission in low spatial resolution dichotomic thematic products: The Pareto Boundary. Remote Sens. Environ. 2004, 91, 280–292. [Google Scholar] [CrossRef]
- Bauer, H.L. The statistical analysis of chaparral and other plant communities by means of transect samples. Ecology 1943, 24, 45–60. [Google Scholar] [CrossRef]
- McIntyre, G. Estimation of plant density using line transects. J. Ecol. 1953, 41, 319–330. [Google Scholar] [CrossRef]
- Buckner, D.L. Point-Intercept Sampling in Revegetation Studies: Maximizing Objectivity and Repeatability; American Society for Surface Mining and Reclamation: Denver, CO, USA, 1985. [Google Scholar]
- Babah Ebbe, M. Biogéographie du Criquet pèlerin, Schistocerca gregaria Forskål, 1775 : Identification, CaractÉrisation et Originalité d’un Foyer Grégarigène en Centrale, Mauritanie. Ph.D. Thesis, École Pratique des Hautes Études de Paris, EPHE, Paris, France, 2008. [Google Scholar]
- Congalton, R.G. A review of assessing the accuracy of classifications of remotely sensed data. Remote Sens. Environ. 1991, 37, 35–46. [Google Scholar] [CrossRef]
- Stehman, S.V. Selecting and interpreting measures of thematic classification accuracy. Remote Sens. Environ. 1997, 89, 77–89. [Google Scholar] [CrossRef]
- Cohen, J. A Coefficient of Agreement for Nominal Scales. Educ. Psychol. Meas. 1960, 20, 37–46. [Google Scholar] [CrossRef]
- Lewis, D.D.; Gale, W.A. A Sequential Algorithm for Training Text Classifiers. ACM SIGIR Forum 1994, 29, 10. [Google Scholar]
- Labatut, V.; Cherifi, H. Accuracy measures for the comparison of classifiers. In Proceedings of The 5th International Conference on Information Technology, Las Vegas, NV, USA, 7–9 April 2008.
- Congalton, R.G.; Mead, R.A. A quantitative method to test for consistency and correctness in photointerpretation. Photogramm. Eng. Remote Sens. 1983, 49, 69–74. [Google Scholar]
- Rosenfield, G.H.; Fitzpatrick-Lins, K. A coefficient of agreement as a measure of thematic classification accuracy. Photogramm. Eng. Remote Sens. 1986, 52, 223–227. [Google Scholar]
- Witten, I.H.; Frank, E. Data Mining: Practical Machine Learning Tools and Techniques, 2nd ed.; Morgan Kaufmann: Burlington, MA, USA, 2005. [Google Scholar]
- Zweig, M.H.; Campbell, G. Receiver-Operating Clinical Medicine (ROC) Plots : A Fundamental Evaluation Tool in. Clin. Chem. 1993, 39, 561–577. [Google Scholar] [PubMed]
- Fawcett, T. Introduction to Receiver Operator Curves. Pattern Recognit. Lett. 2006, 27, 861–874. [Google Scholar] [CrossRef]
- Youden, W.J. Index for rating diagnostic tests. Cancer 1950, 3, 32–35. [Google Scholar] [CrossRef]
- Eva, H.; Lambin, E. Remote sensing of biomass burning in tropical regions: Sampling issues and multisensor approach. Remote Sens. Environ. 1998, 64, 292–315. [Google Scholar] [CrossRef]
- Mayaux, P.; Lambin, E. Estimation of tropical forest area from coarse spatial resolution data: A two-step correction function for proportional errors due to spatial aggregation. Remote Sens. Environ. 1995, 53, 1–15. [Google Scholar] [CrossRef]
- Mallinis, G.; Koutsias, N. Comparing ten classification methods for burned area mapping in a Mediterranean environment using Landsat TM satellite data. Int. J. Remote Sens. 2012, 33, 4408–4433. [Google Scholar] [CrossRef]
- Pepe, M.; Boschetti, L.; Brivio, P.A.; Rampini, A. Comparing the performance of fuzzy and crisp classifiers on remotely sensed images: A case of snow classification. Int. J. Remote Sens. 2010, 31, 6189–6203. [Google Scholar]
- Vintrou, E.; Desbrosse, A.; Bégué, A.; Traoré, S.; Baron, C.; Lo Seen, D. Crop area mapping in West Africa using landscape stratification of MODIS time series and comparison with existing global land products. Int. J. Appl. Earth Obs. Geoinf. 2012, 14, 83–93. [Google Scholar] [CrossRef]
- Sword, G.; Lecoq, M.; Simpson, S.J. Phase polyphenism and preventative locust management. J. Insect Physiol. 2010, 56, 949–957. [Google Scholar] [CrossRef] [PubMed]
- McGarigal, K.; Tagil, S.; Cushman, S.A. Surface metrics: An alternative to patch metrics for the quantification of landscape structure. Landsc. Ecol. 2009, 24, 433–450. [Google Scholar]
- Monod, T. Modes “Contracté” et “Diffus” de la végÉtation Saharienne; Nabu Press: Charleston, WV, USA, 1954; Volume 3. [Google Scholar]
- Ould Babah, M.A. BiogÉographie du Criquet pÈlerin en Mauritanie. Fonctionnement D’une Aire GrégarigÈne et ConsÉquences Sur L’organisation de la Surveillance et de la Lutte Anti- Acridienne; Food and Agriculture Organization (FAO): Rome, Italy, 2003; p. 122. [Google Scholar]
- Tilman, D.; Kareiva, P. Spatial Ecology: The Role of Space in Population Dynamics And Interspecific Interactions; Monographs in Population Biology; Princeton University Press: Princeton, NJ, USA, 1997; Volume 30, p. 368. [Google Scholar]
- Hooper, D.U.; Vitousek, P.M. Ecosystem processes the effects of plant composition and diversity on ecosystem processes. Science 1997, 277, 1302–1305. [Google Scholar] [CrossRef]
- Culmsee, H. The habitat functions of vegetation in relation to the behaviour of the desert locust Schistocerca gregaria (Forskal) (Acrididae: Orthoptera)—A study in Mauritania (West Africa). Phytocoenologia 2002, 32, 645–664. [Google Scholar] [CrossRef]
- Despland, E.; Simpson, S.J. Small-scale vegetation patterns in the parental environment influence the phase state of hatchlings of the desert locust. Physiol. Entomol. 2000, 25, 74–81. [Google Scholar] [CrossRef]
- Ould Babah, M.A.; Sword, G.A. Linking locust gregarization to local resource distribution patterns. Environ. Entomol. 2004, 33, 1577–1583. [Google Scholar] [CrossRef]
- Despland, E.; Collett, M.; Simpson, S.J. Small-scale processes in desert locust swarm formation: How vegetation patterns influence gregarization. Oikos 2000, 88, 652–662. [Google Scholar]
- Despland, E. Fractal index captures the role of vegetation clumping in locust swarming. Funct. Ecol. 2003, 17, 315–322. [Google Scholar] [CrossRef]
- Popov, G. ATlas of Desert Locust Breeding Habitat; Food and Agriculture Organization of the United Nations: Rome, Italy, 1997. [Google Scholar]
- Pedgley, D.E. Desert Locust Forecasting Manual; Centre for Overseas Pest Research: London, UK, 1981; Volume 2. [Google Scholar]
- Kennedy, J.S. The behaviour of the desert locust (Schistocerca gregaria (Forsk.)) (Orthopt.) in an outbreak center. Trans. R. Entomol. Soc. Lond. 1939, 89, 385–542. [Google Scholar] [CrossRef]
- Bouaichi, A.; Simpson, S.J.; Roessingh, P. The influence of environmental microstructure on the behavioural phase state and distribution of the desert locust Schistocerca gregaria. Physiol. Entomol. 1996, 21, 247–256. [Google Scholar] [CrossRef]
- Despland, E.; Simpson, S.J. The role of food distribution and nutritional quality in behavioural phase change in the desert locust. Anim. Behav. 2000, 59, 643–652. [Google Scholar] [CrossRef] [PubMed]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Waldner, F.; Ebbe, M.A.B.; Cressman, K.; Defourny, P. Operational Monitoring of the Desert Locust Habitat with Earth Observation: An Assessment. ISPRS Int. J. Geo-Inf. 2015, 4, 2379-2400. https://doi.org/10.3390/ijgi4042379
Waldner F, Ebbe MAB, Cressman K, Defourny P. Operational Monitoring of the Desert Locust Habitat with Earth Observation: An Assessment. ISPRS International Journal of Geo-Information. 2015; 4(4):2379-2400. https://doi.org/10.3390/ijgi4042379
Chicago/Turabian StyleWaldner, François, Mohamed Abdallahi Babah Ebbe, Keith Cressman, and Pierre Defourny. 2015. "Operational Monitoring of the Desert Locust Habitat with Earth Observation: An Assessment" ISPRS International Journal of Geo-Information 4, no. 4: 2379-2400. https://doi.org/10.3390/ijgi4042379
APA StyleWaldner, F., Ebbe, M. A. B., Cressman, K., & Defourny, P. (2015). Operational Monitoring of the Desert Locust Habitat with Earth Observation: An Assessment. ISPRS International Journal of Geo-Information, 4(4), 2379-2400. https://doi.org/10.3390/ijgi4042379