Predictive Analysis of Yi-Gai-San's Multifaceted Mechanisms for Tremor-dominant Parkinson's Disease via Network Pharmacology and Molecular Docking Validation | Bentham Science
Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Research Article

Predictive Analysis of Yi-Gai-San's Multifaceted Mechanisms for Tremor-dominant Parkinson's Disease via Network Pharmacology and Molecular Docking Validation

Author(s): Chih-Ting Lin, Lung-Yuan Wu and Fan-Shiu Tsai*

Volume 31, Issue 36, 2024

Published on: 14 June, 2024

Page: [5989 - 6012] Pages: 24

DOI: 10.2174/0109298673291838240311075415

open access plus

TIMBC 2025
Abstract

Introduction: Based on comprehensive network-pharmacology and molecular docking analysis, this study was intended to unveil the multiple mechanisms of Yi- Gai-San (YGS) in treating the tremor-dominant subtype of Parkinson's disease (PD-DT). The compounds of YGS were meticulously analyzed, selected, and standardized with references to their pharmacological attributes. Its components included Gouteng (Uncaria rhynchophylla), Chaihu (Radix Bupleuri), Chuanxiong (Chuanxiong Rhizoma), Danggui (Angelicae sinensis radix), Fuling (Wolfiporia extensa), Baizhu (Atractylodis macrocephalae rhizoma), and Gancao (Licorice, Glycyrrhizae radix).

Methods: We identified 75 active compounds within YGS. From these, we predicted 110 gene targets, which exhibited a direct association with PD-DT. PPI network results highlighted core target proteins, including TP53, SLC6A3, GAPDH, MAOB, AKT, BAX, IL6, BCL2, PKA, and CASP3. These proteins potentially alleviate PD-DT by targeting inflammation, modulating neuronal cell apoptosis, and regulating the dopamine system. Furthermore, GO and KEGG enrichment analyses emphasized that YGS might influence various mechanisms, such as the apoptotic process, mitochondrial autophagy, Age-Rage signaling, and dopaminergic and serotonergic synapses. The core proteins from the PPI analysis were selected for the docking experiment.

Results: The docking results demonstrated that the most stable ligand-receptor conformations were kaempferol with CASP3 (-9.5 kcal/mol), stigmasterol with SLC6A3 (-10.5 kcal/mol), shinpterocarpin with BCL2L1 (-9.6 kcal/mol), hirsutine with MAOB (-9.7 kcal/mol), hederagenin with PRKACA (-9.8 kcal/mol), and yatein with GAPDH (-9.8 kcal/mol). These results provide us with research objectives for future endeavors in extracting single compounds for drug manufacturing or in-depth studies on drug mechanisms.

Conclusion: From these computational findings, we suggested that YGS might mitigate PD-DT via “multi-compounds, multi-targets, and multi-pathways.”

Keywords: Yi-Gan-San, Parkinson's disease, tremor-dominant, network pharmacology, molecular docking, Uncaria rhynchophylla.

« Previous
[1]
Bloem, B.R.; Okun, M.S.; Klein, C. Parkinson’s disease. Lancet, 2021, 397(10291), 2284-2303.
[http://dx.doi.org/10.1016/S0140-6736(21)00218-X] [PMID: 33848468]
[2]
Hallett, M. Parkinson’s disease tremor: Pathophysiology. Parkinsonism Relat. Disord., 2012, 18(S2), S85-S86.
[http://dx.doi.org/10.1016/S1353-8020(11)70027-X] [PMID: 22166464]
[3]
Thenganatt, M.A.; Jankovic, J. Parkinson disease subtypes. JAMA Neurol., 2014, 71(4), 499-504.
[http://dx.doi.org/10.1001/jamaneurol.2013.6233] [PMID: 24514863]
[4]
Xiong, W.; Li, L.F.; Huang, L.; Liu, Y.; Xia, Z.C.; Zhou, X.X.; Tang, B.S.; Guo, J.F.; Lei, L.F. Different iron deposition patterns in akinetic/rigid-dominant and tremor-dominant Parkinson’s disease. Clin. Neurol. Neurosurg., 2020, 198, 106181.
[http://dx.doi.org/10.1016/j.clineuro.2020.106181] [PMID: 33022525]
[5]
Jankovic, J. Parkinson’s disease tremors and serotonin. Brain, 2018, 141(3), 624-626.
[http://dx.doi.org/10.1093/brain/awx361] [PMID: 30063797]
[6]
Bandres-Ciga, S.; Diez-Fairen, M.; Kim, J.J.; Singleton, A.B. Genetics of Parkinson’s disease: An introspection of its journey towards precision medicine. Neurobiol. Dis., 2020, 137, 104782.
[http://dx.doi.org/10.1016/j.nbd.2020.104782] [PMID: 31991247]
[7]
Langston, R.G.; Beilina, A.; Reed, X.; Kaganovich, A.; Singleton, A.B.; Blauwendraat, C.; Gibbs, J.R.; Cookson, M.R. Association of a common genetic variant with Parkinson’s disease is mediated by microglia. Sci. Transl. Med., 2022, 14(655), eabp8869.
[http://dx.doi.org/10.1126/scitranslmed.abp8869] [PMID: 35895835]
[8]
Armstrong, M.J.; Okun, M.S. Diagnosis and treatment of parkinson disease. JAMA, 2020, 323(6), 548-560.
[http://dx.doi.org/10.1001/jama.2019.22360] [PMID: 32044947]
[9]
Stibe, C.M.H.; Kempster, P.A.; Lees, A.J.; Stern, G.M. Subcutaneous apomorphine in parkinsonian on-off oscillations. Lancet, 1988, 331(8582), 403-406.
[http://dx.doi.org/10.1016/S0140-6736(88)91193-2] [PMID: 2893200]
[10]
Borovac, J.A. Side effects of a dopamine agonist therapy for Parkinson’s disease: A mini-review of clinical pharmacology. Yale J. Biol. Med., 2016, 89(1), 37-47.
[PMID: 27505015]
[11]
Li, X.; Zhang, Y.; Wang, Y.; Xu, J.; Xin, P.; Meng, Y.; Wang, Q.; Kuang, H. The mechanisms of traditional Chinese medicine underlying the prevention and treatment of Parkinson’s disease. Front. Pharmacol., 2017, 8, 634.
[http://dx.doi.org/10.3389/fphar.2017.00634] [PMID: 28970800]
[12]
Zhang, G.; Xiong, N.; Zhang, Z.; Liu, L.; Huang, J.; Yang, J.; Wu, J.; Lin, Z.; Wang, T. Effectiveness of traditional Chinese medicine as an adjunct therapy for Parkinson’s disease: A systematic review and meta-analysis. PLoS One, 2015, 10(3), e0118498.
[http://dx.doi.org/10.1371/journal.pone.0118498] [PMID: 25756963]
[13]
Zhang, J.; Ma, Y.; Shen, X. Evaluation on the efficacy and safety of chinese herbal medication xifeng dingchan pill in treating Parkinson’s disease: Study protocol of a multicenter, open-label, randomized active-controlled trial. J. Integr. Med., 2013, 11(4), 285-290.
[http://dx.doi.org/10.3736/jintegrmed2013035] [PMID: 23867247]
[14]
Taiwan Herbal Pharmacopeia, 4th ed; Taiwan Ministry of Health and Welfare, 2022.
[15]
Shinno, H.; Utani, E.; Okazaki, S.; Kawamukai, T.; Yasuda, H.; Inagaki, T.; Inami, Y.; Horiguchi, J. Successful treatment with Yi-Gan San for psychosis and sleep disturbance in a patient with dementia with Lewy bodies. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2007, 31(7), 1543-1545.
[http://dx.doi.org/10.1016/j.pnpbp.2007.07.002] [PMID: 17688986]
[16]
Miyaoka, T.; Furuya, M.; Yasuda, H.; Hayashida, M.; Nishida, A.; Inagaki, T.; Horiguchi, J. Yi-gan san for the treatment of neuroleptic-induced tardive dyskinesia: An open-label study. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2008, 32(3), 761-764.
[http://dx.doi.org/10.1016/j.pnpbp.2007.12.003] [PMID: 18201810]
[17]
Hu, S.; Mak, S.; Zuo, X.; Li, H.; Wang, Y.; Han, Y. Neuroprotection against MPP+-induced cytotoxicity through the activation of PI3-K/Akt/GSK3β/MEF2D signaling pathway by rhynchophylline, the major tetracyclic oxindole alkaloid isolated from Uncaria rhynchophylla. Front. Pharmacol., 2018, 9, 768.
[http://dx.doi.org/10.3389/fphar.2018.00768] [PMID: 30072894]
[18]
Zheng, M.; Chen, M.; Liu, C.; Fan, Y.; Shi, D. Alkaloids extracted from Uncaria rhynchophylla demonstrate neuroprotective effects in MPTP-induced experimental parkinsonism by regulating the PI3K/Akt/mTOR signaling pathway. J. Ethnopharmacol., 2021, 266, 113451.
[http://dx.doi.org/10.1016/j.jep.2020.113451] [PMID: 33049346]
[19]
Hatano, T. An exploratory study of the efficacy and safety of yokukansan for neuropsychiatric symptoms in patients with Parkinson’s disease. J. Neural. Transm, 2014, 121(3), 275-281.
[http://dx.doi.org/10.1007/s00702-013-1105-y]
[20]
Jin, C.; Cho, K.H.; Kwon, S.; Lee, H.G.; Kim, T.H.; Jung, W.S.; Moon, S.K.; Cho, S.Y.; Kang, B.K.; Park, J.M.; Park, H.J.; Ko, C.N. Effectiveness and safety of herbal medicine Ukgansan for clinical symptoms in Parkinson’s disease: A pilot, randomized, assessor-blinded clinical trial. Front. Neurol., 2022, 13, 1025269.
[http://dx.doi.org/10.3389/fneur.2022.1025269] [PMID: 36438946]
[21]
Miyaoka, T.; Furuya, M.; Horiguchi, J.; Wake, R.; Hashioka, S.; Tohyama, M.; Mori, N.; Minabe, Y.; Iyo, M.; Ueno, S.; Ezoe, S.; Murotani, K.; Hoshino, S.; Seno, H. Efficacy and safety of yokukansan in treatment-resistant schizophrenia: A randomized, double-blind, placebo-controlled trial (a positive and negative syndrome scale, five-factor analysis). Psychopharmacology, 2015, 232(1), 155-164.
[http://dx.doi.org/10.1007/s00213-014-3645-8] [PMID: 24923986]
[22]
Chi, Z.; Guo, R-J.; Ren, F-F. Network pharmacological analysis on the active ingredients of Yigan Powder in treating Alzheimer’s disease with depressive disorder. Hainan Yixueyuan Xuebao, 2022, 28(2), 124-134.
[23]
Yang, H.; Zhang, W.; Huang, C.; Zhou, W.; Yao, Y.; Wang, Z.; Li, Y.; Xiao, W.; Wang, Y. A novel systems pharmacology model for herbal medicine injection: A case using reduning injection. BMC Complement. Altern. Med., 2014, 14(1), 430.
[http://dx.doi.org/10.1186/1472-6882-14-430] [PMID: 25366653]
[24]
Zhang, Y.; Yuan, T.; Li, Y.; Wu, N.; Dai, X. Network pharmacology analysis of the mechanisms of compound herba sarcandrae (Fufang Zhongjiefeng) aerosol in chronic pharyngitis treatment. Drug Des. Devel. Ther., 2021, 15, 2783-2803.
[http://dx.doi.org/10.2147/DDDT.S304708] [PMID: 34234411]
[25]
Zhang, R.; Zhu, X.; Bai, H.; Ning, K. Network pharmacology databases for traditional Chinese medicine: Review and assessment. Front Pharmacol, 2019, 10, 123.
[http://dx.doi.org/10.3389/fphar.2019.00123]
[26]
Green, O.; Bader, D.A. Faster betweenness centrality based on data structure experimentation. Procedia Comput. Sci., 2013, 18, 399-408.
[http://dx.doi.org/10.1016/j.procs.2013.05.203]
[27]
Alighiarloo, S.N.; Taghizadeh, M.; Tavirani, R.M.; Goliaei, B.; Peyvandi, A.A. Protein-protein interaction networks (PPI) and complex diseases. Gastroenterol. Hepatol. Bed Bench, 2014, 7(1), 17-31.
[PMID: 25436094]
[28]
von Mering, C. STRING: Known and predicted protein-protein associations, integrated and transferred across organisms. Nucleic Acids Res., 2005, 33, D433-D437.
[http://dx.doi.org/10.1093/nar/gki005]
[29]
Harris, M. A.; J Clark; Ireland, A; Lomax, J.; Ashburner, M.; Foulger, R.; Eilbeck, K.; Lewis, S.; Marshall, B.; Mungall, C.; Richter, J.; Rubin, G.M.; Blake, J.A.; Bult, C.; Dolan, M.; Drabkin, H.; Eppig, J.T.; Hill, D.P.; Ni, L.; Ringwald, M.; Balakrishnan, R. The Gene Ontology (GO) database and informatics resource. Nucleic Acids Res., 2004, 32, D258-D261.
[http://dx.doi.org/10.1093/nar/gkh036]
[30]
Trott, O.; Olson, A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem., 2010, 31(2), 455-461.
[http://dx.doi.org/10.1002/jcc.21334] [PMID: 19499576]
[31]
Kleywegt, G.J.; Jones, A.T. Model building and refinement practice. In: Methods in Enzymology; Elsevier, 1997; 277, pp. 208-230.
[http://dx.doi.org/10.1016/S0076-6879(97)77013-7]
[32]
Read, R.J. A new generation of crystallographic validation tools for the protein data bank. Structure, 2011, 19(10), 1395-1412.
[33]
Kushida, H.; Matsumoto, T.; Ikarashi, Y. Properties, pharmacology, and pharmacokinetics of active indole and oxindole alkaloids in Uncaria hook. Front. Pharmacol., 2021, 12, 688670.
[http://dx.doi.org/10.3389/fphar.2021.688670] [PMID: 34335255]
[34]
Alvira, D.; Tajes, M.; Verdaguer, E.; Castroviejo, A.D.; Folch, J.; Camins, A.; Pallas, M. Inhibition of the cdk5/p25 fragment formation may explain the antiapoptotic effects of melatonin in an experimental model of Parkinson’s disease. J. Pineal Res., 2006, 40(3), 251-258.
[http://dx.doi.org/10.1111/j.1600-079X.2005.00308.x] [PMID: 16499562]
[35]
Haque, M.N.; Hannan, M.A.; Dash, R.; Choi, S.M.; Moon, I.S. The potential LXRβ agonist stigmasterol protects against hypoxia/reoxygenation injury by modulating mitophagy in primary hippocampal neurons. Phytomedicine, 2021, 81, 153415.
[http://dx.doi.org/10.1016/j.phymed.2020.153415] [PMID: 33285471]
[36]
Mongkolpobsin, K.; Sillapachaiyaporn, C.; Nilkhet, S.; Tencomnao, T.; Baek, S.J. Stigmasterol isolated from Azadirachta indica flowers attenuated glutamate-induced neurotoxicity via downregulation of the Cdk5/p35/p25 signaling pathway in the HT-22 cells. Phytomedicine, 2023, 113, 154728.
[http://dx.doi.org/10.1016/j.phymed.2023.154728] [PMID: 36898255]
[37]
Pan, X.; Liu, X.; Zhao, H.; Wu, B.; Liu, G. Antioxidant, anti-inflammatory and neuroprotective effect of kaempferol on rotenone-induced Parkinson’s disease model of rats and SH-S5Y5 cells by preventing loss of tyrosine hydroxylase. J. Funct. Foods, 2020, 74, 104140.
[http://dx.doi.org/10.1016/j.jff.2020.104140]
[38]
Abdullah, A.; Ravanan, P. Kaempferol mitigates endoplasmic reticulum stress induced cell death by targeting caspase 3/7. Sci. Rep., 2018, 8(1), 2189.
[http://dx.doi.org/10.1038/s41598-018-20499-7] [PMID: 29391535]
[39]
Filomeni, G.; Graziani, I.; De Zio, D.; Dini, L.; Centonze, D.; Rotilio, G.; Ciriolo, M.R. Neuroprotection of kaempferol by autophagy in models of rotenone-mediated acute toxicity: Possible implications for Parkinson’s disease. Neurobiol. Aging, 2012, 33(4), 767-785.
[http://dx.doi.org/10.1016/j.neurobiolaging.2010.05.021] [PMID: 20594614]
[40]
Wu, A.G.; Zeng, W.; Wong, V.K.W.; Zhu, Y.Z.; Lo, A.C.Y.; Liu, L.; Law, B.Y.K. Hederagenin and α-hederin promote degradation of proteins in neurodegenerative diseases and improve motor deficits in MPTP-mice. Pharmacol. Res., 2017, 115, 25-44.
[http://dx.doi.org/10.1016/j.phrs.2016.11.002] [PMID: 27838509]
[41]
Karthikkeyan, G.; Pervaje, R.; Pervaje, S.K.; Prasad, T.S.K.; Modi, P.K. Prevention of MEK-ERK-1/2 hyper-activation underlines the neuroprotective effect of Glycyrrhiza glabra L. (Yashtimadhu) against rotenone-induced cellular and molecular aberrations. J. Ethnopharmacol., 2021, 274, 114025.
[http://dx.doi.org/10.1016/j.jep.2021.114025] [PMID: 33775804]
[42]
Muchandi, A.A.; Dhawale, S.C. Protective effects of ethanolic extract of Piper cubeba L. on D-galactose induced neuronal lipofuscinogenesis in albino rats. Sci. Eng. Health Stud., 2018, 12(1), 11-17.
[http://dx.doi.org/10.14456/sehs.2018.8]
[43]
Sanguanphun, T.; Promtang, S.; Sornkaew, N.; Niamnont, N.; Sobhon, P.; Meemon, K. Anti-parkinson effects of Holothuria leucospilota-derived palmitic acid in Caenorhabditis elegans model of Parkinson’s disease. Mar. Drugs, 2023, 21(3), 141.
[http://dx.doi.org/10.3390/md21030141] [PMID: 36976190]
[44]
Tian, Q.; Wang, L.; Sun, X.; Zeng, F.; Pan, Q.; Xue, M. Scopoletin exerts anticancer effects on human cervical cancer cell lines by triggering apoptosis, cell cycle arrest, inhibition of cell invasion and PI3K/AKT signalling pathway. J. BUON Off. J. Balk. Union Oncol., 2019, 24(3), 997-1002.
[PMID: 31424653]
[45]
Zhu, S.; Jiao, W.; Xu, Y.; Hou, L.; Li, H.; Shao, J.; Zhang, X.; Wang, R.; Kong, D. Palmitic acid inhibits prostate cancer cell proliferation and metastasis by suppressing the PI3K/Akt pathway. Life Sci., 2021, 286, 120046.
[http://dx.doi.org/10.1016/j.lfs.2021.120046] [PMID: 34653428]
[46]
Jung, H.Y.; Nam, K.N.; Woo, B.C.; Kim, K.P.; Kim, S.O.; Lee, E.H. Hirsutine, an indole alkaloid of Uncaria rhynchophylla, inhibits inflammation-mediated neurotoxicity and microglial activation. Mol. Med. Rep., 2013, 7(1), 154-158.
[http://dx.doi.org/10.3892/mmr.2012.1135] [PMID: 23117160]
[47]
Zheng, M.; Chen, M.; Wang, W.; Zhou, M.; Liu, C.; Fan, Y.; Shi, D. Protection by rhynchophylline against MPTP/MPP+-induced neurotoxicity via regulating PI3K/Akt pathway. J. Ethnopharmacol., 2021, 268, 113568.
[http://dx.doi.org/10.1016/j.jep.2020.113568] [PMID: 33188898]
[48]
Terada, K.; Matsushima, Y.; Matsunaga, K.; Takata, J.; Karube, Y.; Ishige, A.; Chiba, K. The Kampo medicine Yokukansan (YKS) enhances nerve growth factor (NGF)-induced neurite outgrowth in PC12 cells. Bosn. J. Basic Med. Sci., 2017, 18(3), 224-233.
[http://dx.doi.org/10.17305/bjbms.2017.2248] [PMID: 28961087]
[49]
Chen, L.; Huang, Y.; Yu, X.; Lu, J.; Jia, W.; Song, J.; Liu, L.; Wang, Y.; Huang, Y.; Xie, J.; Li, M. Corynoxine protects dopaminergic neurons through inducing autophagy and diminishing neuroinflammation in rotenone-induced animal models of Parkinson’s disease. Front. Pharmacol., 2021, 12, 642900.
[http://dx.doi.org/10.3389/fphar.2021.642900] [PMID: 33927622]
[50]
Doo, A.R.; Kim, S.N.; Park, J.Y.; Cho, K.H.; Hong, J.; Eun-Kyung, K.; Moon, S.K.; Jung, W.S.; Lee, H.; Jung, J.H.; Park, H.J. Neuroprotective effects of an herbal medicine, Yi-Gan San on MPP+/MPTP-induced cytotoxicity in vitro and in vivo. J. Ethnopharmacol., 2010, 131(2), 433-442.
[http://dx.doi.org/10.1016/j.jep.2010.07.008] [PMID: 20633628]
[51]
Xian, Y.F.; Lin, Z.X.; Mao, Q.Q.; Ip, S.P.; Su, Z.R.; Lai, X.P. Protective effect of isorhynchophylline against β-amyloid-induced neurotoxicity in PC12 cells. Cell. Mol. Neurobiol., 2012, 32(3), 353-360.
[http://dx.doi.org/10.1007/s10571-011-9763-5] [PMID: 22042506]
[52]
Zhao, Y.R.; Qu, W.; Liu, W.Y.; Hong, H.; Feng, F.; Chen, H.; Xie, N. YGS40, an active fraction of Yi-Gan San, reduces hydrogen peroxide-induced apoptosis in PC12 cells. Chin. J. Nat. Med., 2015, 13(6), 438-444.
[http://dx.doi.org/10.1016/S1875-5364(15)30037-6] [PMID: 26073340]
[53]
Beg, T.; Jyoti, S.; Naz, F.; Rahul; Ali, F.; Ali, S.K.; Reyad, A.M.; Siddique, Y.H. Protective effect of kaempferol on the transgenic drosophila model of Alzheimer’s disease. CNS Neurol. Disord. Drug Targets, 2018, 17(6), 421-429.
[http://dx.doi.org/10.2174/1871527317666180508123050] [PMID: 29745345]
[54]
Sekar, S.; Taghibiglou, C. Nuclear accumulation of GAPDH, GluA2 and p53 in post-mortem substantia nigral region of patients with Parkinson’s disease. Neurosci. Lett., 2020, 716, 134641.
[http://dx.doi.org/10.1016/j.neulet.2019.134641] [PMID: 31759082]
[55]
Tatton, N.A. Increased caspase 3 and Bax immunoreactivity accompany nuclear GAPDH translocation and neuronal apoptosis in Parkinson’s disease. Exp. Neurol., 2000, 166(1), 29-43.
[http://dx.doi.org/10.1006/exnr.2000.7489] [PMID: 11031081]
[56]
Yamaguchi, K.; Yamazaki, S.; Kumakura, S.; Someya, A.; Iseki, M.; Inada, E.; Nagaoka, I. Yokukansan, a Japanese herbal medicine, suppresses substance P-induced production of interleukin-6 and interleukin-8 by human U373 MG glioblastoma astrocytoma cells. Endocr. Metab. Immune Disord. Drug Targets, 2020, 20(7), 1073-1080.
[http://dx.doi.org/10.2174/1871530320666200131103733] [PMID: 32003704]
[57]
Ebisawa, S.; Andoh, T.; Shimada, Y.; Kuraishi, Y. Yokukansan improves mechanical allodynia through the regulation of interleukin-6 expression in the spinal cord in mice with neuropathic pain. Evid. Based Complement. Alternat. Med., 2015, 2015, 1-8.
[http://dx.doi.org/10.1155/2015/870687] [PMID: 25866544]
[58]
Lian, T.H.; Guo, P.; Zuo, L.J.; Hu, Y.; Yu, S.Y.; Yu, Q.J.; Jin, Z.; Wang, R.D.; Li, L.X.; Zhang, W. Tremor-dominant in parkinson disease: The relevance to iron metabolism and inflammation. Front. Neurosci., 2019, 13, 255.
[http://dx.doi.org/10.3389/fnins.2019.00255] [PMID: 30971879]
[59]
Derk, J.; MacLean, M.; Juranek, J.; Schmidt, A.M. The receptor for advanced glycation endproducts (RAGE) and mediation of inflammatory neurodegeneration. J. Alzheimers Dis. Parkinsonism, 2018, 8(1), 421.
[http://dx.doi.org/10.4172/2161-0460.1000421] [PMID: 30560011]
[60]
Tang, X.; Lu, J.; Chen, H.; Zhai, L.; Zhang, Y.; Lou, H.; Wang, Y.; Sun, L.; Song, B. Underlying mechanism and active ingredients of tianma gouteng acting on cerebral infarction as determined via network pharmacology analysis combined with experimental validation. Front. Pharmacol., 2021, 12, 760503.
[http://dx.doi.org/10.3389/fphar.2021.760503] [PMID: 34867377]
[61]
Banerjee, P.; Eckert, A.O.; Schrey, A.K.; Preissner, R. ProTox-II: A webserver for the prediction of toxicity of chemicals. Nucleic Acids Res., 2018, 46(W1), W257-W263.
[http://dx.doi.org/10.1093/nar/gky318] [PMID: 29718510]
[62]
Bickerton, G.R.; Paolini, G.V.; Besnard, J.; Muresan, S.; Hopkins, A.L. Quantifying the chemical beauty of drugs. Nat. Chem., 2012, 4(2), 90-98.
[http://dx.doi.org/10.1038/nchem.1243] [PMID: 22270643]
[63]
Hou, W.C.; Lin, R.D.; Chen, C.T.; Lee, M.H. Monoamine oxidase B (MAO-B) inhibition by active principles from Uncaria rhynchophylla. J. Ethnopharmacol., 2005, 100(1-2), 216-220.
[http://dx.doi.org/10.1016/j.jep.2005.03.017] [PMID: 15890481]
[64]
Ishida, Y.; Ebihara, K.; Tabuchi, M.; Imamura, S.; Sekiguchi, K.; Mizoguchi, K.; Kase, Y.; Koganemaru, G.; Abe, H.; Ikarashi, Y. Yokukansan, a traditional japanese medicine, enhances the L-DOPA-induced rotational response in 6-hydroxydopamine-lesioned rats: Possible inhibition of COMT. Biol. Pharm. Bull., 2016, 39(1), 104-113.
[http://dx.doi.org/10.1248/bpb.b15-00691] [PMID: 26725433]
[65]
Xu, Y.; Wang, R.; Hou, T.; Li, H.; Han, Y.; Li, Y.; Xu, L.; Lu, S.; Liu, L.; Cheng, J.; Wang, J.; Xu, Q.; Liu, Y.; Liang, X. Uncariphyllin A-J, indole alkaloids from Uncaria rhynchophylla as antagonists of dopamine D2 and Mu opioid receptors. Bioorg. Chem., 2023, 130, 106257.
[http://dx.doi.org/10.1016/j.bioorg.2022.106257] [PMID: 36375349]
[66]
Zhong, Y.; Liu, H.; Liu, G.; Zhao, L.; Dai, C.; Liang, Y.; Du, J.; Zhou, X.; Mo, L.; Tan, C.; Tan, X.; Deng, F.; Liu, X.; Chen, L. A review on pathology, mechanism, and therapy for cerebellum and tremor in Parkinson’s disease. NPJ Parkinsons Dis., 2022, 8(1), 82.
[http://dx.doi.org/10.1038/s41531-022-00347-2] [PMID: 35750692]
[67]
Ahsas Goyal, W.; Chisti, W.; Verma, A.; Agrawal, N.; Bansal, K. The role of the serotonergic system of the brain in the pathogenesis of Parkinson’s disease. Neurochem. J., 2023, 17(1), 30-41.
[http://dx.doi.org/10.1134/S181971242301004X]
[68]
Dirkx, M.F.; Bologna, M. The pathophysiology of Parkinson’s disease tremor. J. Neurol. Sci., 2022, 435, 120196.
[http://dx.doi.org/10.1016/j.jns.2022.120196] [PMID: 35240491]
[69]
Luo, T.; Lu, Y.; Yan, S.; Xiao, X.; Rong, X.; Guo, J. Network pharmacology in research of Chinese medicine formula: Methodology, application and prospective. Chin. J. Integr. Med., 2020, 26(1), 72-80.
[http://dx.doi.org/10.1007/s11655-019-3064-0] [PMID: 30941682]
[70]
Wang, X.; Wang, Z.Y.; Zheng, J.H.; Li, S. TCM network pharmacology: A new trend towards combining computational, experimental and clinical approaches. Chin. J. Nat. Med., 2021, 19(1), 1-11.
[http://dx.doi.org/10.1016/S1875-5364(21)60001-8] [PMID: 33516447]

© 2025 Bentham Science Publishers | Privacy Policy