Abstract

This study investigates how temperature affects the response of capacitance sensors used to measure the dielectric permittivity of unsaturated soils. The dielectric permittivity is strongly correlated with the volumetric water content, an important variable in understanding water flow processes in unsaturated soils. Although capacitance sensors have been used widely in laboratory and field applications, they have only recently been used to characterize thermally induced water flow in unsaturated soils during geothermal heat exchange processes. To date, no studies have characterized the effects of temperature on capacitance sensor output for dense, compacted soils. This paper describes a calibration methodology that was used to isolate the effects of temperature on the response of capacitance probes in compacted soils having different initial conditions (i.e., compaction water content and dry density). It was observed that changes in temperature of 26°C can lead to an increase in the measured dielectric permittivity of up to 24 % with no changes in volumetric water content of the soil. In addition to defining a soil-specific calibration equation to relate volumetric water content and dielectric permittivity under ambient temperature conditions, a correction equation was proposed for temperature effects. The capacitance sensor's response to changing temperatures was observed to be sensitive to both the initial volumetric water content and the initial density of the soil, and parameters were defined for both of these terms in the correction equation.

References

1.
Assouline
,
S.
,
Narkis
,
K.
,
Tyler
,
S.
,
Lunati
,
I.
,
Parlange
,
M.
, and
Selker
,
J.
,
2010
, “
On the Diurnal Soil Water Content Dynamics During Evaporation Using Dielectric Methods
,”
Vadose Zone J.
, Vol.
9
, No.
3
, pp.
709
718
. https://doi.org/10.2136/vzj2009.0109
2.
Başer
,
T.
,
Linkowski
,
D.
, and
McCartney
,
J. S.
,
2014
, “
Heat Storage in Soil-Borehole Thermal Energy Storage Systems in the Vadose Zone
,”
Proceedings of the 7th International Congress on Environmental Geotechnics
, Nov 10–14,
Melbourne, Australia
, pp.
1
8
.
3.
Başer
,
T.
and
McCartney
,
J. S.
,
2015
, “
Development of a Full-Scale Soil-Borehole Thermal Energy Storage System
,”
Proceedings of the International Foundations Conference and Equipment Exposition (IFCEE 2015)
,
San Antonio, TX
, Mar 17–21, ASCE, pp.
1608
1617
.
4.
Baumhardt
,
R. L.
,
Lascano
,
R. J.
, and
Evett
,
S. R.
,
2000
, “
Soil Material, Temperature, and Salinity Effects on Calibration of Multisensory Capacitance Probes
,”
Soil Sci. Soc. Am. J.
, Vol.
64
, No.
6
, pp.
1940
1946
. https://doi.org/10.2136/sssaj2000.6461940x
5.
Bogena
,
H.
,
Huisman
,
J.
,
Oberdörster
,
C.
, and
Vereecken
,
H.
,
2007
, “
Evaluation of a Low-Cost Soil Water Content Sensor for Wireless Network Applications
,”
J. Hydrol.
, Vol.
344
, Nos.
1–2
, pp.
32
42
. https://doi.org/10.1016/j.jhydrol.2007.06.032
6.
Brandl
,
H.
,
2006
, “
Energy Foundations and Other Thermo-Active Ground Structures
,”
Géotechnique
, Vol.
56
, No.
2
, pp.
81
122
.
7.
Cobos
,
D.
and
Campbell
,
C.
,
2007
, “
Correcting Temperature Sensitivity of ECH2O Soil Moisture Sensors
,” Decagon Devices Application Note,
Decagon Devices
,
Pullman, WA
.
8.
Coccia
,
C. J. R.
,
Casady
,
A.
, and
McCartney
,
J. S.
,
2013
, “
Thermo-Hydro-Mechanical Response of Unsaturated Soils During Cyclic Heating and Cooling
,”
Proceedings of the 1st Pan-American Conference on Unsaturated Soils
,
Cartagena de Indias, Colombia
, Feb 20–22,
Taylor and Francis
,
London
, pp.
141
146
.
9.
Coccia
,
C. J. R.
and
McCartney
,
J. S.
,
2013
, “
Impact of Heat Exchange on the Thermo-Hydro-Mechanical Response of Reinforced Embankments
,”
Proceedings of GeoCongress 2013
,
San Diego, CA
, Mar 3–5,
ASCE
, pp.
343
352
.
10.
Czarnomski
,
N.
,
Moore
,
G.
,
Pypker
,
T.
,
Licata
,
J.
, and
Bond
,
B.
,
2005
, “
Precision and Accuracy of Three Alternative Instruments for Measuring Soil Water Content in Two Forest Soils of the Pacific Northwest
,”
Can. J. For. Res.
, Vol.
35
, No.
8
, pp.
1867
1876
. https://doi.org/10.1139/x05-121
11.
Decagon Devices
,
2014
, “
5TM Water Content and Temperature Sensors
,”
Operation Manual
,
Pullman, WA
.
12.
Evett
,
S.
,
Tolk
,
J.
, and
Howell
,
T.
,
2006
, “
Soil Profile Water Content Determination
,”
Vadose Zone J.
, Vol.
5
, No.
3
, pp.
894
907
. https://doi.org/10.2136/vzj2005.0149
13.
Jones
,
S. B.
,
Blonquist
, ,
J. M.
 Jr.
,
Robinson
,
D. A.
,
Rasmussen
,
V. P.
, and
Or
,
D.
,
2005
, “
Standardizing Characterization of Electromagnetic Water Content Sensors. Part 1. Methodology
,”
Vadose Zone J.
Vol.
4
, No.
4
, pp.
1048
1058
. https://doi.org/10.2136/vzj2004.0140
14.
Kizito
,
F.
,
Campbell
,
C.
,
Campbell
,
G.
,
Cobos
,
D.
,
Teare
,
B.
,
Carter
,
B.
, and
Hopmans
,
J.
,
2008
, “
Frequency, Electrical Conductivity and Temperature Analysis of a Low-Cost Capacitance Soil Moisture Sensor
,”
J. Hydrol.
, Vol.
352
, Nos.
2–3
, pp.
367
378
. https://doi.org/10.1016/j.jhydrol.2008.01.021
15.
Laloui
,
L.
,
Nuth
,
M.
, and
Vulliet
,
L.
,
2006
, “
Experimental and Numerical Investigations of the Behaviour of a Heat Exchanger Pile
,”
Int. J. Numer. Anal. Methods Geomech.
, Vol.
30
, No.
8
, pp.
763
781
. https://doi.org/10.1002/nag.499
16.
Malmberg
,
C.G.
and
Maryott
,
A. A.
,
1956
, “
Dielectric Constant of Water From 0°C to 100°C
,”
J. Res. Natl. Bur. Standards
, Vol.
56
, No.
1
, pp.
1
8
. https://doi.org/10.6028/jres.056.001
17.
McCartney
,
J. S.
,
2007
, “
Determination of the Hydraulic Characteristics of Unsaturated Soils Using a Centrifuge Permeameter
,” Ph.D. dissertation,
The Univ. of Texas
, Austin, TX, 388 p.
18.
Mitchell
,
J. K.
,
Hooper
,
D. R.
, and
Campanella
,
R. G.
,
1965
, “
Permeability of Compacted Clay
,”
J. Soil Mech. Found. Div. ASCE
, Vol.
91
(SM–4), pp.
41
65
.
19.
Murphy
,
K. D.
,
McCartney
,
J. S.
, and
Henry
,
K. H.
,
2015
, “
Evaluation of Thermo-Mechanical and Thermal Behavior of Full-Scale Energy Foundations
,”
Acta Geotech.
, Vol.
10
, No.
2
, pp.
179
195
https://doi.org/10.1007/s11440-013-0298-4.
20.
Nadler
,
A.
,
Gamliel
,
A.
, and
Peretz
,
I.
,
1999
, “
Practical Aspects of Salinity Effect on TDR-Measured Water Content
,”
Soil Sci. Soc. Am. J.
, Vol.
63
, No.
5
, pp.
1070
1076
. https://doi.org/10.2136/sssaj1999.6351070x
21.
Or
,
D.
and
Wraith
,
J.
,
1999
, “
Temperature Effects on Soil Bulk Dielectric Permittivity Measured by Time Domain Reflectometry: A Physical Model
,”
Water Resour. Res.
, Vol.
35
, No.
2
, pp.
371
383
. https://doi.org/10.1029/1998WR900008
22.
Pepin
,
S.
,
Livingston
,
N.
, and
Hook
,
J. R.
,
1995
, “
Temperature-Dependent Measurement Errors in Time Domain Reflectometry Determinations of Soil Water
,”
Soil Sci. Soc. Am.
, Vol.
59
, No.
1
, pp.
38
43
. https://doi.org/10.2136/sssaj1995.03615995005900010006x
23.
Philip
,
J. R.
, and
De Vries
,
D. A.
,
1957
, “
Moisture Movement in Porous Materials Under Temperature Gradients
,”
Trans. Am. Geophys. Union
, Vol.
38
, pp.
222
232
. https://doi.org/10.1029/TR038i002p00222
24.
Pozzato
,
A.
,
Tarantino
,
A.
,
McCartney
,
J. S.
, and
Zornberg
,
J. G.
,
2008
, “
Effect of Dry Density on the Relationship Between Water Content and TDR-Measured Apparent Dielectric Permittivity in Compacted Clay
,”
Proceedings of the 1st European Conference on Unsaturated Soils (E-UNSAT 2008)
,
Durham, UK
, Jul 2–4,
Taylor and Francis
,
London
, pp.
173
179
.
25.
Pruess
,
K.
,
1991
, “
TOUGH2: A General-purpose Numerical Simulator for Multiphase Fluid and Heat Flow
,” LBL-29400,
Lawrence Berkeley Laboratory
,
Berkeley, CA
.
26.
Robinson
,
D. A.
,
Kelleners
,
T. J.
,
Cooper
,
J. D.
,
Gardner
,
C. M. K.
,
Wilson
,
P.
,
Lebron
,
I.
, and
Logsdon
,
S.
,
2005
, “
Evaluation of a Capacitance Probe Frequency Response Model Accounting for Bulk Electrical Conductivity: Comparison With TDR and Network Analyzer Measurements
,”
Vadose Zone J.
, Vol.
4
, No.
4
, pp.
992
1003
. https://doi.org/10.2136/vzj2004.0131
27.
Rosenbaum
,
U.
,
Huisman
,
J. A.
,
Vrba
,
J.
,
Vereecken
,
H.
, and
Bogena
,
H. R.
,
2011
, “
Correction of Temperature and Electrical Conductivity Effects on Dielectric Permittivity Measurements With ECH2O Sensors
,”
Vadose Zone J.
, Vol.
10
, No.
2
, pp.
582
593
. https://doi.org/10.2136/vzj2010.0083
28.
Seyfried
,
M.
, and
Grant
,
L.
,
2007
, “
Temperature Effects on Soil Dielectric Properties Measured at 50 MHz
,”
Vadose Zone J.
, Vol.
6
, No.
4
, pp.
759
765
. https://doi.org/10.2136/vzj2006.0188
29.
Smits
,
K. M.
,
Sakaki
,
T.
,
Howington
,
S. E.
,
Peters
,
J. F.
, and
Illangasekare
,
T. H.
,
2013
, “
Temperature Dependence of Thermal Properties of Sands Over a Wide Range of Temperatures [30–70°C]
,”
Vadose Zone J.
, Vol.
12
, No.
1
, pp.
1
8
.
30.
Stewart
,
M. A.
,
Coccia
,
C. J. R.
, and
McCartney
,
J. S.
,
2014
, “
Issues in the Implementation of Sustainable Heat Exchange Technologies in Reinforced, Unsaturated Soil Structures
,”
Proceedings of GeoCongress 2014 (GSP 234)
,
Abu-Farsakh
M.
and
Hoyos
L.
, Eds.,
ASCE
, pp.
4066
4075
.
31.
Thomas
,
H. R.
and
He
,
Y.
,
1997
, “
A Coupled Heat-Moisture Transfer Theory for Deformable Unsaturated Soil and Its Algorithmic Implementation
,”
Int. J. Numer. Methods Eng.
, Vol.
40
, No.
18
, pp.
3421
3441
. https://doi.org/10.1002/(SICI)1097-0207(19970930)40:18<3421::AID-NME220>3.0.CO;2-C
32.
Thomas
,
H. R.
and
King
,
S. D.
,
1994
, “
A Non-Linear, Two Dimensional, Potential Based Analysis of Coupled Heat and Mass Transfer in a Porous Medium
,”
Int. J. Numer. Methods Eng.
, Vol.
37
, No.
21
, pp.
3707
3722
. https://doi.org/10.1002/nme.1620372108
33.
Thomas
,
H. R.
and
Sansom
,
M. R.
,
1995
, “
Fully Coupled Analysis of Heat, Moisture and Air Transfer in Unsaturated Soil
,”
J. Eng. Mech.
, Vol.
121
, No.
3
, pp.
392
405
. https://doi.org/10.1061/(ASCE)0733-9399(1995)121:3(392)
34.
Topp
,
G.
,
Davis
,
J.
, and
Annan
,
A.
,
1980
, “
Electromagnetic Determination of Soil Water Content: Measurements in Coaxial Transmission Lines
,”
Water Resour. Res.
, Vol.
16
, No.
3
, pp.
574
582
. https://doi.org/10.1029/WR016i003p00574
35.
Wraith
,
J.
, and
Or
,
D.
,
1999
, “
Temperature Effects on Soil Bulk Dielectric Permittivity Measured by Time Domain Reflectometry: Experimental Evidence and Hypothesis Development
,”
Water Resour. Res.
, Vol.
35
, No.
2
, pp.
361
369
. https://doi.org/10.1029/1998WR900006
This content is only available via PDF.
You do not currently have access to this content.