Abstract
Proteinases such as thrombin and trypsin can affect tissues by activating a novel family of G protein-coupled proteinase-activated receptors (PARs 1–4) by exposing a ‘tethered’ receptor-triggering ligand (TL). Work with synthetic TL-derived PAR peptide sequences (PAR-APs) that stimulate PARs 1, 2 and 4 has shown that PAR activation can play a role in many tissues, including the gastrointestinal tract, kidney, muscle, nerve, lung and the central and peripheral nervous systems, and can promote tumor growth and invasion. PARs may play roles in many settings, including cancer, arthritis, asthma, inflammatory bowel disease, neurodegeneration and cardiovascular disease, as well as in pathogen-induced inflammation. In addition to activating or disarming PARs, proteinases can also cause hormone-like effects via PAR-independent mechanisms, such as activation of the insulin receptor. In addition to proteinases of the coagulation cascade, recent data suggest that members of the family of kallikrein-related peptidases (KLKs) represent endogenous PAR regulators. In summary: (1) proteinases are like hormones, signaling in a paracrine and endocrine manner via PARs or other mechanisms; (2) KLKs must now be seen as potential hormone-like PAR regulators in vivo; and (3) PAR-regulating proteinases, their target PARs, and their associated signaling pathways appear to be novel therapeutic targets.
©2008 by Walter de Gruyter Berlin New York