A THEORETICAL BASIS FOR THE PRIESTLEY-TAYLOR COEFFICIENT | Boundary-Layer Meteorology
Skip to main content

A THEORETICAL BASIS FOR THE PRIESTLEY-TAYLOR COEFFICIENT

  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

The relationship between potential evaporation and arealevaporation is assessed using a closed-box model of the convectiveboundary layer (CBL). Potential evaporation is defined as theevaporation that would occur from a hypothetical saturated surface,with radiative properties similar to those of the whole area, and smallenough that the excess moisture flux does not modify thecharacteristics of the CBL. It is shown that the equilibrium rate ofpotential evaporation is given by Ep0=αE0,where E0 is the equilibrium evaporation (radiative termof the Penman formula), and α is a coefficient similar to thePriestley-Taylor coefficient. Its expression is \(\alpha = 1 + \left[ {1/(\varepsilon + 1)} \right]\left( {\left\langle {r_s } \right\rangle /r_a } \right)\), where \(\left\langle {r_s } \right\rangle \) is the areal surface resistance, ra is the localaerodynamic resistance, and ε is the dimensionless slope of thesaturation specific humidity at the temperature of the air. Itscalculated value is around 1 for any saturated surface surrounded bywater, about 1.3 for saturated grass surrounded by well-watered grassand can be greater than 3 over saturated forest surrounded by forest.The formulation obtained provides a theoretical basis to the overallmean value of 1.26, empirically found by Priestley and Taylor for thecoefficient α. Examining, at the light of this formulation, thecomplementary relationship between potential and actual evaporation(as proposed by Bouchet and Morton), it appears that the sum ofthese two magnitudes is not a constant at equilibrium, but depends onthe value of the areal surface resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bouchet, R. J.: 1963, 'Evapotranspiration Réelle et Potentielle. Signification Climatique’, in: Proc. Berkeley, Calif. Symp. IAHS, Publ. 62, 134–142.

    Google Scholar 

  • Brutsaert, W.: 1982, Evaporation into the atmosphere. D. Reidel Pub. Co., Dordrecht, 299 pp.

    Google Scholar 

  • Brutsaert, W. and Stricker, H.: 1979, ‘An Advection-Aridity Approach to Estimate Actual Regional Evapotranspiration’, Water Resour.Res. 15, 443–450.

    Google Scholar 

  • Culf, A. D.: 1994, ‘Equilibrium Evaporation Beneath a Growing Convective Boundary Layer’, Boundary Layer Meteorol. 71, 37–49.

    Google Scholar 

  • Davies, J. A. and Allen, C. D.: 1973, ‘Equilibrium, Potential and Actual Evaporation from Cropped Surfaces in Southern Ontario’, J. Appl. Meteorol. 12, 649–657.

    Google Scholar 

  • J. Climate and Appl. Meteorol. 22, 572–578.

    Google Scholar 

  • De Bruin, H. A. R.: 1989, ‘Physical Aspects of the Planetary Boundary Layer with Special Reference to Regional Evapotranspiration’, in: Estimation of Areal Evapotranspiration, IAHS, Publ. 177.

    Google Scholar 

  • De Bruin, H. A. R. and Keijman, J. Q.: 1979, ‘The Priestley-Taylor Evaporation Model Applied to Large, Shallow Lake in the Netherlands’, J. Appl. Meteorol. 18, 898–903.

    Google Scholar 

  • Fortin, J. P. and Seguin, B.: 1975, 'Estimation de l'ETR régionale à Partir de l'ETP Locale: Utilisation de la Relation de Bouchet à Différentes Échelles de Temps’, Ann. Agron. 26, 537–554.

    Google Scholar 

  • Garratt, J. R.: 1994, The Atmospheric Boundary Layer. Cambridge University Press, 316 pp.

  • Granger, R. J.: 1989, ‘An Examination of the Concept of Potential Evaporation’, J. Hydrol. 111, 9–19.

    Google Scholar 

  • Granger, R. J.: 1989, ‘A Complementary Relationship Approach for Evaporation from Non-saturated Surfaces’, J. Hydrol. 111, 31–38.

    Google Scholar 

  • Jacobs, C. M. J. and de Bruin, H. A. R.: 1992, ‘The Sensitivity of Regional Transpiration to Land-Surface Characteristics: Significance of Feedback’, J. Climate 5, 683–698.

    Google Scholar 

  • LeDrew, E. F.: 1979, ‘A Diagnostic Examination of a Complementary Relationship Between Actual and Potential Evapotranspiration’, J. Appl. Meteorol. 18, 495–501.

    Google Scholar 

  • McIlroy, I. C. and Angus, D. E.: 1964, ‘Grass, Water and Soil Evaporation at Aspendale’, Agric. Meteorol. 1, 201–224.

    Google Scholar 

  • McMillan, W. D. and Burgy, R. H.: 1960, ‘Interception Loss from Grass’, J. Geophys. Res. 65, 2389–2394.

    Google Scholar 

  • McNaughton, K. G.: 1976, ‘Evaporation and Advection I: Evaporation from Extensive Homogeneous Surfaces’, Quarti J. Roy. Meteorol. Soc. 102, 181–191.

    Google Scholar 

  • McNaughton, K. G.: 1989, 'Regional Interactions Between Canopies and the Atmosphere', in G. Russel et al. (ed.), Plant Canopies: Their Growth, Form and Function, SEB seminar series, 31. Cambridge University Press, pp. 63–82.

    Google Scholar 

  • McNaughton, K. G. and Jarvis, P. G.: 1983, ‘Predicting the Effects of Vegetation Changes on Transpiration and Evaporation', in: T. T. Kozlowski (ed.), Water Deficits and Plant Growth, Vol. VII. Academic Press, London, pp. 1–47.

    Google Scholar 

  • McNaughton, K. G. and Spriggs, T. W.: 1986, ‘A Mixed-Layer Model for Regional Evaporation’, Boundary Layer Meteorol. 34, 243–262.

    Google Scholar 

  • McNaughton, K. G. and Spriggs, T. W.: 1989, ‘An Evaluation of the Priestley-Taylor Equation and the Complementary Relationship Using Results from a Mixed-Layer Model of the Convective Boundary Layer’, in Estimation of Areal Evapotranspiration, IAHS, Publ. 177.

  • Monteith, J. L.: 1981, 'Evaporation and Surface Temperature', Quart. J. Roy. Meteorol. Soc. 107, 1–27.

    Google Scholar 

  • Monteith, J. L.: 1985, ‘Evaporation from Land Surfaces: Progress in Analysis and Prediction since 1948’, in Advances in Evapotranspiration, ASAE, pp. 4–12.

  • Moore, C. J.: 1976, ‘A Comparative Study of Radiation Balance Above Forest and Grassland’,Quart. J. Roy. Meteorol. Soc. 102, 889–899.

    Google Scholar 

  • Morton, F. I.: 1969, ‘Potential Evaporation as a Manifestation ofRegional Evaporation’,Water Resour. Res. 5, 1244–1255.

    Google Scholar 

  • Morton, F. I.: 1975, ‘Estimating Evaporation and Transpiration from Climatological Observations’, J. Appl. Meteorol. 14, 488–497.

    Google Scholar 

  • Morton, F. I.: 1983, ‘Operational Estimates of Areal Evapotranspiration and their Significance to the Science and Practice of Hydrology’, J. Hydrol. 66, 1–76.

    Google Scholar 

  • Nash, J. E.: 1989, ‘Potential Evaporation and "The Complementary Relationship"’, J. Hydrol. 111, 1–7.

    Google Scholar 

  • Penman, H. L.: 1956, ‘Evaporation: An Introductory Survey’, Netherlands J. Agric. Sci. 1, 9–29.

    Google Scholar 

  • Perrier, A.: 1980, 'Etude Microclimatique des Relations Entre les Propriétés de Surface et les Caract éristiques de l'Air’, in: Météorologie et Environnement, Evry, France.

  • Perrier, A.: 1982, ‘Land Surface Processes: Vegetation’, in: P. S. Eagleson (ed.), Land Surface Processes in Atmospheric General Circulation Models, Cambridge University Press.

  • Priestley, C. H. B. and Taylor, R. J.: 1972, ‘On the Assessment of Surface Heat Flux and Evaporation Using Large-Scale Parameters’, Mon. Wea. Rev. 100, 81–92.

    Google Scholar 

  • Raupach, M. R.: 1991, ‘Vegetation-Atmosphere Interaction in Homogeneous and Heterogeneous Terrain: Some Implications of Mixed-Layer Dynamics’, Vegetatio 91, 105–120.

    Google Scholar 

  • Seguin, B.: 1975, 'Influence de l' évapotranspiration Régionale sur la Mesure Locale d' évapotranspiration Potentielle’, Agric. Meteorol. 15, 355–370.

    Google Scholar 

  • Slatyer, R. O. and McIlroy, I. C.: 1961, Practical Micrometeorology, CSIRO, Melbourne, Australia. 310 pp.

    Google Scholar 

  • Stewart, J. B.: 1977, ‘Evaporation from the Wet Canopy of a Pine Forest’, Water Resour. Res. 13, 915–921.

    Google Scholar 

  • Thornthwaite, C. W.: 1948, ‘An Approach Toward a Rational Classification of Climate’, Geogr. Rev. 38, 55–94.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

LHOMME, JP. A THEORETICAL BASIS FOR THE PRIESTLEY-TAYLOR COEFFICIENT. Boundary-Layer Meteorology 82, 179–191 (1997). https://doi.org/10.1023/A:1000281114105

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1000281114105