Published online by Cambridge University Press: 01 February 2013
Clinical outcomes have shown that robot-assisted rehabilitation is potential of enhancing quantification of therapeutic process for patients with stroke. During robotic rehabilitation exercise, the assistive robot must guarantee subject's safety in emergency situations, e.g., sudden spasm or twitch, abruptly severe tremor, etc. This paper presents a hierarchical control strategy, which is proposed to improve the safety and robustness of the rehabilitation system. The proposed hierarchical architecture is composed of two main components: a high-level safety supervisory controller (SSC) and low-level position-based impedance controller (PBIC). The high-level SSC is used to automatically regulate the desired force for a reasonable disturbance or timely put the emergency mode into service according to the evaluated physical state of training impaired limb (PSTIL) to achieve safety and robustness. The low-level PBIC is implemented to achieve compliance between the robotic end-effector and the impaired limb during the robot-assisted rehabilitation training. The results of preliminary experiments demonstrate the effectiveness and potentiality of the proposed method for achieving safety and robustness of the rehabilitation robot.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.