Abstract
Bioinspired algorithms, such as evolutionary algorithms and ant colony optimization, are widely used for different combinatorial optimization problems. These algorithms rely heavily on the use of randomness and are hard to understand from a theoretical point of view. This paper contributes to the theoretical analysis of ant colony optimization and studies this type of algorithm on one of the most prominent combinatorial optimization problems, namely the traveling salesperson problem (TSP). We present a new construction graph and show that it has a stronger local property than one commonly used for constructing solutions of the TSP. The rigorous runtime analysis for two ant colony optimization algorithms, based on these two construction procedures, shows that they lead to good approximation in expected polynomial time on random instances. Furthermore, we point out in which situations our algorithms get trapped in local optima and show where the use of the right amount of heuristic information is provably beneficial.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Chandra, B., Karloff, H. J., & Tovey, C. A. (1999). New results on the old k-Opt algorithm for the traveling salesman problem. SIAM Journal on Computing, 28(6), 1998–2029.
Dorigo, M., & Gambardella, L. M. (1997). Ant colony system: a cooperative learning approach to the traveling salesman problem. IEEE Transactions on Evolutionary Computation, 1(1), 53–66.
Dorigo, M., & Stützle, T. (2004). Ant colony optimization. Cambridge: MIT Press.
Eiben, A., & Smith, J. (2007). Introduction to evolutionary computing (2nd ed.). Berlin: Springer.
Englert, M., Röglin, H., & Vöcking, B. (2007). Worst case and probabilistic analysis of the 2-opt algorithm for the TSP: extended abstract. In N. Bansal, K. Pruhs, & C. Stein (Eds.), SODA’07: Proceedings of the eighteenth annual ACM–SIAM symposium on discrete algorithms (pp. 1295–1304). Philadelphia: Society for Industrial and Applied Mathematics.
Gutjahr, W. J. (2007). Mathematical runtime analysis of ACO algorithms: survey on an emerging issue. Swarm Intelligence, 1(1), 59–79.
Gutjahr, W. J., & Sebastiani, G. (2008). Runtime analysis of ant colony optimization with best-so-far reinforcement. Methodology and Computing in Applied Probability, 10(3), 409–433.
He, J., & Yao, X. (2004). A study of drift analysis for estimating computation time of evolutionary algorithms. Natural Computing, 3(1), 21–35.
Horoba, C., & Sudholt, D. (2009). Running time analysis of ACO systems for shortest path problems. In T. Stützle, M. Birattari, & H. H. Hoos (Eds.), Lecture notes in computer science: Vol. 5752. Engineering stochastic local search algorithms. Designing, implementing and analyzing effective heuristics, second international workshop, SLS, 2009 (pp. 76–91). Berlin: Springer.
Johnson, D. S., & McGeoch, L. A. (1997). The traveling salesman problem: a case study in local optimization. In E. H. L. Aarts & J. K. Lenstra (Eds.), Local search in combinatorial optimization. Somerset: Wiley.
Kötzing, T., Neumann, F., Röglin, H., & Witt, C. (2010). Theoretical properties of two ACO approaches for the traveling salesman problem. In M. Dorigo, M. Birattari, G. A. D. Caro, R. Doursat, A. P. Engelbrecht, D. Floreano, L. M. Gambardella, R. Groß, E. Sahin, H. Sayama, & T. Stützle (Eds.), Lecture notes in computer science: Vol. 6234. Swarm intelligence, 7th international conference, ANTS, 2010 (pp. 324–335). Berlin: Springer.
Neumann, F., Sudholt, D., & Witt, C. (2008). Rigorous analyses for the combination of ant colony optimization and local search. In M. Dorigo, M. Birattari, C. Blum, M. Clerc, T. Stützle, & A. F. T. Winfield (Eds.), Lecture notes in computer science: Vol. 5217. Ant colony optimization and swarm intelligence, 6th international conference, ANTS, 2008 (pp. 132–143). Berlin: Springer.
Neumann, F., Sudholt, D., & Witt, C. (2009). Analysis of different MMAS ACO algorithms on unimodal functions and plateaus. Swarm Intelligence, 3(1), 35–68.
Neumann, F., & Witt, C. (2009). Runtime analysis of a simple ant colony optimization algorithm. Algorithmica, 54(2), 243–255.
Neumann, F., & Witt, C. (2010). Ant colony optimization and the minimum spanning tree problem. Theoretical Computer Science, 411(25), 2406–2413.
Neumann, F., & Witt, C. (2010). Bioinspired computation in combinatorial optimization—algorithms and their computational complexity. Berlin: Springer.
Spielman, D. A., & Teng, S.-H. (2004). Smoothed analysis of algorithms: why the simplex algorithm usually takes polynomial time. Journal of the ACM, 51(3), 385–463.
Stützle, T., & Hoos, H. H. (2000). \(\mathcal{MAX}\)–\(\mathcal{MIN}\) ant system. Future Generations Computer Systems, 16(8), 889–914.
Zhou, Y. (2009). Runtime analysis of an ant colony optimization algorithm for TSP instances. IEEE Transactions on Evolutionary Computation, 13(5), 1083–1092.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Kötzing, T., Neumann, F., Röglin, H. et al. Theoretical analysis of two ACO approaches for the traveling salesman problem. Swarm Intell 6, 1–21 (2012). https://doi.org/10.1007/s11721-011-0059-7
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11721-011-0059-7