An overview of sensor calibration inter-comparison and applications | Frontiers of Earth Science Skip to main content
Log in

An overview of sensor calibration inter-comparison and applications

  • Review Article
  • Published:
Frontiers of Earth Science in China Aims and scope Submit manuscript

Abstract

Long-term climate data records (CDR) are often constructed using observations made by multiple Earth observing sensors over a broad range of spectra and a large scale in both time and space. These sensors can be of the same or different types operated on the same or different platforms. They can be developed and built with different technologies and are likely operated over different time spans. It has been known that the uncertainty of climate models and data records depends not only on the calibration quality (accuracy and stability) of individual sensors, but also on their calibration consistency across instruments and platforms. Therefore, sensor calibration inter-comparison and validation have become increasingly demanding and will continue to play an important role for a better understanding of the science product quality. This paper provides an overview of different methodologies, which have been successfully applied for sensor calibration inter-comparison. Specific examples using different sensors, including MODIS, AVHRR, and ETM+, are presented to illustrate the implementation of these methodologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barnes W L, Pagano T S, Salomonson V V (1998). Prelaunch characteristics of the Moderate Resolution Imaging Sectroradiometer (MODIS) on EOS-AM1. IEEE Trans Geosci Remote Sensing, 36: 1088–1100

    Article  Google Scholar 

  • Barnes W L, Salomonson V V (1993). MODIS: A global image spectroradiometer for the Earth Observing System. Critical Reviews of Optical Science and Technology, CR47: 285–307

    Google Scholar 

  • Barnes WL, Xiong X, Eplee R, Sun J, Lyu C H (2006). Use of the Moon for calibration and characterization of MODIS, SeaWiFS, and VIRS. Earth Science Satellite Remote Sensing, 2: 98–119

    Article  Google Scholar 

  • Brown O B, Brown J, Evans R (1985). Calibration of advanced very high resolution radiometer infrared observations. J Geophys Res, 90(C6): 11667–11677

    Article  Google Scholar 

  • Cabot F, Hagolle O, Henry P (2000). Relative and Multi-Temporal Calibration of AVHRR, Seawifs, and Vegetation Using POLDER Characterization of Desert Sites. Proceedings of IGARSS, 2000: 2188–2190

    Google Scholar 

  • Cabot F, Hagolle O, Ruffel C, Henry P (1999). Use of remote sensing data repository for in-flight calibration of optical sensors over terrestrial targets. Proceedings of SPIE 3750: 514–523

    Article  Google Scholar 

  • Cao C, Heidinger A (2002). Inter-Comparison of the Longwave Infrared Channels of MODIS and AVHRR/NOAA-16 using Simultaneous Nadir Observations at Orbit Intersections. Proceedings of SPIE 4814: 306–316

    Article  Google Scholar 

  • Cao C, Sullivan J, Maturi E, Sapper J (2004a). The effect of orbit drift on the calibration of the 3.7 um channel of the AVHRR onboard NOAA-14 and its impact on night-time sea surface temperature retrievals. Int J Remote Sens, 25(5): 975–986

    Article  Google Scholar 

  • Cao C, Weinreb M, Sullivan J (2001). Solar Contamination Effects on the Infrared Channels of the AVHRR. J Geophys Res, 106(No D24): 33463–33469

    Article  Google Scholar 

  • Cao C, Weinreb M, Xu H (2004b). Predicting simultaneous nadir overpasses among polar-orbiting meteorological satellites for the intersatellite calibration of radiometers. Journal of Atmospheric and Oceanic Technology, 21: 537–542

    Article  Google Scholar 

  • Cao C, Xiong X, Wu A, Wu X (2008). Assessing the consistency of AVHRR and MODIS L1B reflectance for generating Fundamental Climate Data Records. J Geophys Res, 113, D09114. doi:10.1029/2007JD009363

    Article  Google Scholar 

  • Cao C, Xu H, Sullivan J, McMillin L, Ciren P, Hou Y (2005). Intersatellite radiance biases for the High Resolution Infrared Radiation Sounders (HIRS) onboard NOAA-15, -16, and -17 from simultaneous nadir observations. Journal of Atmospheric and Oceanic Technology, 22(4): 381–395

    Article  Google Scholar 

  • Chander G, Xiong X, Angal A, Choi T (2009). An Assessment of African Test Sites in the Context of a Global Network of Quality-Assured Reference Standards. Proceedings of IGARSS 2009

  • Cohen W B, Goward S N (2004). Landsat’s role in ecological applications of remote sensing. BioScience, 54(6): 535–545

    Article  Google Scholar 

  • Eplee R E, Bailey S, Barnes R, Kieffer H H, McClain C R (2006). Comparison of SeaWiFS on-orbit Lunar and Vicarious Calibrations. Proceedings of SPIE 6296

  • Esaias W, Abbott M, Barton I, Brown O, Campbell J, Carder K, Clark D, Evans R, Hoge F, Gordon H, Balch W, Letelier R, Minnett P (1998). An Overview of MODIS Capabilities for Ocean Science Observations. IEEE Trans Geosci Remote Sensing, 36: 1250–1265

    Article  Google Scholar 

  • Goward S N, Irons J, Franks S, Arvidson T, Williams D, Faundeen J (2006). Historical record of landsat global coverage: mission operations, NSLRSDA, and international cooperator stations. Photogrammetric Engineering and Remote Sensing, 72: 1155–1169

    Google Scholar 

  • Goward S N, Williams D L (1997). Landsat and Earth Systems Science: development of terrestrial monitoring. Photogrammetric Engineering and Remote Sensing, 63(7): 887–900

    Google Scholar 

  • Guenther B, Butler J, Ardanuy P (1997). Workshop on Strategies for Calibration and Validation of Global Change and Measurements. NASA Reference Publication 1397

  • Heidinger A K, Cao C, Sullivan J T (2002). Using Moderate Resolution Imaging Spectrometer (MODIS) to calibrate advanced very high resolution radiometer reflectance channels, J Geophys Res, 107(D23), 4702. doi:10.1029/2001JD002035

    Article  Google Scholar 

  • Hook S, Vaughan R, Tonooka H, Schladow S (2007). Absolute Radiometric In-Flight Validation of Mid and Thermal Infrared Data from ASTER and MODIS on the Terra Spacecraft Using the Lake Tahoe CA/NV, USA Automated Validation Site. IEEE Trans Geosci Remote Sensing, 45(6): 1798–1807

    Article  Google Scholar 

  • Justice C, Vermote E, Townshend J, Defries R, Roy D, Hall D, Salomonson V, Privette J, Riggs G, Strahler A, Lucht W, Myneni B, Lewis P, Barnsley M (1998). The Moderate Resolution Imaging Spectroradiometer (MODIS): land Remote Sensing for Global Change Research. IEEE Trans Geosci Remote Sensing, 36: 1228–1249

    Article  Google Scholar 

  • Kieffer H H, Stone T (2005). The Spectral Irradiance of the Moon. The Astron J, 129(6): 2887–2901

    Article  Google Scholar 

  • King M, Menzel W, Kaufman Y, Tanre D, Gao B, Platnick S, Ackerman S, Remer L, Pincus R, Hubanks P (2003). Cloud and aerosol properties, precipitable water, and profiles of temperature and water vapor from MODIS. IEEE Trans Geosci Remote Sensing, 41: 442–458

    Article  Google Scholar 

  • Markham B, Thome K, Barsi J, Kaita E, Helder D, Barker J, Scaramuzza, P (2004). Landsat-7 ETM+ on-orbit reflective-band radiometric stability and absolute calibration. IEEE Trans Geosci Remote Sensing, 42(12): 2810–2820

    Article  Google Scholar 

  • Masek J G, Vermote E, Huang C, Wolfe R, Cohen W, Hall F, Kutler J, Nelson P (2008). North American forest disturbance mapped from a decadal Landsat record. Remote Sensing of Environment, 112: 2914–2926

    Article  Google Scholar 

  • Minnett P, Brown O, Evans R, Key E, Kearns E, Kilpatrick K, Kumar A, Maillet K, Szczodrak M (2004). Sea-surface Temperature Measurements from the Moderate-Resolution Imaging Spectroradiometer (MODIS) on Aqua and Terra. Proceedings of IGARSS 2004: 4576–4579

    Google Scholar 

  • Ohring B, Wielicki R, Spencer B, Emery W, Datla R (2004). Workshop Report: Satellite Instrument Calibration for Measuring Global Climate Change. NISTIR 7074

  • Ohring G, Anderson J G, Ardanuy P, Bingham G, Butler J, Cao C, Datla R, Dykema J, Emery W, Flynn L, Fraser G, Goldberg M, Kopp G, Iguchi T, Kunkee D, Leroy S, Miller L, Pollock D, Revercomb H, Shipley S, St. Germain K, Stone T, Tansock J, Thurgood A, Tobin D, Ungar S, Weng F, Wielicki B, Winker D, Xiong X (2008). Achieving Satellite Instrument Calibration for Climate Change. Camp Spring: NOAA NESDIS Publication

    Google Scholar 

  • Parkinson C L (2003). Aqua: an earth-observing satellite mission to examine water and other climate variables. IEEE Trans Geosci Remote Sensing, 41: 173–183

    Article  Google Scholar 

  • Rao N, Chen J (1999). Revised post-launch calibration of the visible and near-IR channels NOAA14/AVHRR. Int J Remote Sens, 20: 3485–3491

    Article  Google Scholar 

  • Salomonson V, Barnes W, Xiong X, Kempler S, Masuoka E (2002). An Overview of the Earth Observing System MODIS Instrument and Associated Data Systems Performance. Proceedings of IGARSS, 2002

  • Schaaf C B, Gao F, Strahler A H, Lucht W, Li X, Tsang T, Strugnell N C, Zhang X, Jin Y, Muller J P, Lewis P, Barnsley M, Hobson P, Disney M, Roberts G, Dunderdale M, Doll C, d’Entremont R P, Hu N, Liang S, Privette J L, Roy D (2002). First operational BRDF, albedo nadir reflectance products from MODIS. Remote Sensing of Environment, 83: 135–148

    Article  Google Scholar 

  • Six D, Fily M, Alvain S, Henry P, Benoist J (2004). Surface Characterisation of the Dome Concordia Area (Antarctica) as a Potential Satellite Calibration Site Using SPOT 4/VEGETATION Instrument. Remote Sensing of Environment, 89: 83–94

    Article  Google Scholar 

  • Steyn-Ross D A, Steyn-Ross M, Clift S (1992). Radiance calibrations for AVHRR infrared channels. J Geophys Res, 97(C4): 5551–5568

    Article  Google Scholar 

  • Sun J, Xiong X, Barnes W L, Guenther B (2007). MODIS reflective solar bands on-orbit lunar calibration. IEEE Trans Geosci Remote Sens, 45(7): 2383–2393

    Article  Google Scholar 

  • Thome K, Czapla-Myer J, Biggar S (2003). Vicarious calibration of Aqua and Terra MODIS. In: Proceedings of SPIE 5151: 395–405

    Article  Google Scholar 

  • Trishchenko A P (2002). Removing unwanted fluctuations in the AVHRR thermal calibration data using robust techniques. Journal of Atmospheric and Oceanic Technology, 19: 1939–1954

    Article  Google Scholar 

  • Trishchenko A P, Fedosejevs G, Li Z, Cihlar J (2002). Trends and uncertainties in thermal calibration of AVHRR radiometers onboard NOAA-9 to NOAA-16. J Geophys Res, 107(24): 1701–1713

    Article  Google Scholar 

  • Vogelmann J E, Howard SM, Yang L, Larson C R, Wylie B K, Van Driel J N (2001). Completion of the 1990’s National Land Cover Data Set for the conterminous United States. Photogrammetric Engineering and Remote Sensing, 67: 650–662

    Google Scholar 

  • Walton C, Sullivan J, Rao C, Weinreb M(1998). Corrections for detector nonlinearities and calibration inconsistencies of the infrared channels of the AVHRR. J Geophys Res, 103: 3323–3337

    Article  Google Scholar 

  • Wan Z, Zhang Y, Zhang Q, Li Z (2004). Quality Assessment and Validation of the MODIS Global Land Surface Temperature. Int J Remote Sensing, 25(1): 261–274

    Article  Google Scholar 

  • Warren S G, Brandt R E (1998). Effect of surface roughness on bidirectional reflectance of Antarctic snow. J Geophys Res, 103, E11, 25: 789–807

    Google Scholar 

  • Wenny B, Xiong X (2008). Using a Cold Earth Surface Target to Characterize Long-term Stability of the MODIS Thermal Emissive Bands. IEEE Geosci Remote Sens Let, 5(2): 162–165

    Article  Google Scholar 

  • Woodcock C E, Macomber S A, Pax-Lenney M, Cohen W C (2001). Monitoring large areas for forest change using Landsat: Generalization across space, time and Landsat sensors. Remote Sensing of Environment, 78: 194–203

    Article  Google Scholar 

  • Wu A, Cao C, Xiong X (2003). Intercomparison of the 11-and 12-µm bands of Terra and Aqua MODIS using NOAA-17 AVHRR. Proceedings of SPIE 5151: 384–394

    Article  Google Scholar 

  • Wu A, X Xiong X, Cao C (2008). Terra and Aqua MODIS Intercomparison of three reflective solar bands using AVHRR onboard the NOAA-KLM satellites. Int J Remote Sens, 29(7): 1997–2010

    Article  Google Scholar 

  • Wulder M A, White J C, Goward S N, Masek J G, Irons J R, Herold M, Cohen W B, Loveland T R, Woodcock C E (2008). Landsat continuity: issues and opportunities for land cover monitoring. Remote Sensing of Environment, 112: 955–969

    Article  Google Scholar 

  • Xiong X, Barnes W (2006). An Overview of MODIS radiometric calibration and characterization. Advances in Atmospheric Sciences, 23(1): 69–79

    Article  Google Scholar 

  • Xiong X, Chiang K, Esposito J, Guenther B, Barnes W (2003). MODIS on-orbit calibration and characterization. motrologia, 40: 89–92

    Article  Google Scholar 

  • Xiong X, Sun J, Barnes W (2008). Inter-comparison of on-orbit calibration consistency between terra and aqua MODIS reflective solar bands using the moon. IEEE Geosci Remote Sens Let, 5(4): 778–782. doi:10.1109/LGRS.2008.2005591

    Article  Google Scholar 

  • Xiong X, Wenny B, Barnes W L (2009a). Overview of NASA earth observing systems terra and aqua moderate resolution imaging spectroradiometer instrument calibration algorithms and on-orbit performance. J Appl Remote Sens, 3, 032501. doi: 10.1117/1.3180864

    Article  Google Scholar 

  • Xiong X, Wu A, Cao C (2008). On-orbit calibration and intercomparison of terra and aqua MODIS surface temperature spectral bands, Int J Remote Sens, 29(17): 5347–5359

    Article  Google Scholar 

  • Xiong X, Wu A, Sun J, Wenny B (2006). An overview of intercomparison methodologies for terra and aqua MODIS calibration. Proceedings of SPIE 6296, 62960C. doi: 10.1117/12.679162

  • Xiong X, Wu A, Wenny B (2009b). Using dome C for MODIS calibration stability and consistency. J Appl Remote Sens, 3, 033520, doi: 10.1117/1.3116663

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoxiong (Jack) Xiong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xiong, X.(., Cao, C. & Chander, G. An overview of sensor calibration inter-comparison and applications. Front. Earth Sci. China 4, 237–252 (2010). https://doi.org/10.1007/s11707-010-0002-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11707-010-0002-z

Keywords

Navigation