A terrestrial observatory approach to the integrated investigation of the effects of deforestation on water, energy, and matter fluxes | Science China Earth Sciences Skip to main content
Log in

A terrestrial observatory approach to the integrated investigation of the effects of deforestation on water, energy, and matter fluxes

  • Research Paper
  • Special Topic: Watershed Science
  • Published:
Science China Earth Sciences Aims and scope Submit manuscript

Abstract

Integrated observation platforms have been set up to investigate consequences of global change within a terrestrial network of observatories (TERENO) in Germany. The aim of TERENO is to foster the understanding of water, energy, and matter fluxes in terrestrial systems, as well as their biological and physical drivers. Part of the Lower Rhine Valley-Eifel observatory of TERENO is located within the Eifel National Park. Recently, the National Park forest management started to promote the natural regeneration of near-natural beech forest by removing a significant proportion of the spruce forest that was established for timber production after World War II. Within this context, the effects of such a disturbance on forest ecosystem functioning are currently investigated in a deforestation experiment in the Wüstebach catchment, which is one of the key experimental research sites within the Lower Rhine Valley-Eifel observatory. Here, we present the integrated observation system of the Wüstebach test site to exemplarily demonstrate the terrestrial observatory concept of TERENO that allows for a detailed monitoring of changes in hydrological and biogeochemical states and fluxes triggered by environmental disturbances. We present the observation platforms and the soil sampling campaign, as well as preliminary results including an analysis of data consistency. We specifically highlight the capability of integrated datasets to enable improved process understanding of the post-deforestation changes in ecosystem functioning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abdou H M, Flury M. 2004. Simulation of water flow and solute transport in free drainage lysimeters and field soils with heterogeneous structures. Eur J Soil Sci, 55: 229–241

    Article  Google Scholar 

  • Allen R G, Pereira L S, Raes D, et al. 1998. Crop Evapotranspiration-Guidelines for Computing Crop Water Requirements. Rome: FAO-Food and Agriculture Organization of the United Nations

    Google Scholar 

  • Anderson S P, Bales R C, Duffy C J. 2008. Critical zone observatories: Building a network to advance interdisciplinary study of Earth surface processes. Mineral Mag, 72: 7–10

    Article  Google Scholar 

  • Andréassian V. 2004. Waters and forests: From historical controversy to scientific debate. J Hydrol, 291: 1–27

    Article  Google Scholar 

  • Bent G C. 2001. Effects of forest-management activities on runoff components and ground-water recharge to Quabbin Reservoir, central Massachusetts. For Ecol Manage, 143: 115–129

    Article  Google Scholar 

  • Berger T W, Untersteiner H, Schume H, et al. 2008. Throughfall fluxes in a secondary spruce (Picea abies), a beech (Fagus sylvatica) and a mixed spruce-beech stand. For Ecol Manage, 255: 605–618

    Article  Google Scholar 

  • Best A, Zhang L, McMahon T A, et al. 2003. A critical review of paired catchment studies with reference to seasonal flows and climatic variability. Technical Report CSIRO. Canberra, Australia. 30

    Google Scholar 

  • Bogena H, Schulz K, Vereecken H. 2006. Towards a network of observatories in terrestrial environmental research. Adv Geosci, 9: 109–114

    Article  Google Scholar 

  • Bogena H R, Herbst M, Huisman J A, et al. 2010. Potential of wireless sensor networks for measuring soil water content variability. Vadose Zone J, 9: 1002–1013

    Article  Google Scholar 

  • Bogena H R, Kunkel R, Krüger E, et al. 2012. TERENO-Long-term monitoring network for terrestrial research. Hydrol Wasserb, 3: 138–143

    Google Scholar 

  • Bogena H R, Huisman J A, Baatz R, et al. 2013. Accuracy of the cosmicray soil water content probe in humid forested ecosystems: A worst case scenario. Water Resour Res, 49: 5778–5791

    Article  Google Scholar 

  • Borchardt H. 2012. Impact of pleistocene cover-beds on discharge-The anthropogenic influenced Wüstebach-River (Nationalpark Eifel) as an example. PhD Thesis. Aachen: Technical University of Aachen (RWTH Aachen). 299

    Google Scholar 

  • Bosch J M, Hewlett J D. 1982. A review of catchment experiments to determine the effect of vegetation changes on water yield and evapotranspiration. J Hydrol, 55: 3–23

    Article  Google Scholar 

  • Brown A E, Western A W, McMahon T A, et al. 2012. Impact of forest cover changes on annual streamflow and flow duration curves. J Hydrol, 483: 39–50

    Article  Google Scholar 

  • Burt T P, Howden N J K, Worrall F, et al. 2008. Importance of long-term monitoring for detecting environmental change: lessons from a lowland river in South East England. Biogeosciences, 5: 1529–1535

    Article  Google Scholar 

  • Čermák J, Kučera J, Nadezhdina N. 2004. Sapflow measurements with some thermodynamic methods, flow integration within trees and scaling up from sample trees to entire forest stands. Trees, 18: 529–546

    Article  Google Scholar 

  • Cornelissen T, Diekkrüger B, Bogena H R. 2014. Importance of a bedrock aquifer in the 3D simulation of discharge and soil moisture patterns at different spatial and temporal scales-The Wüstebach case study. J Hydrol, doi: dx.doi.org/10.1016/j.jhydrol.2014.01.060

    Google Scholar 

  • Delzon S, Loustau D. 2005. Age-related decline in stand water use: sap flow and transpiration in a pine forest chronosequence. Agric For Meteorol, 129: 105–119

    Article  Google Scholar 

  • Cooper B. 1990. Nitrate depletion in the riparian zone and stream channel of a small headwater catchment. Hydrobiologia, 202: 13–26

    Article  Google Scholar 

  • Budyko M I. 1974. Climate and Life. New York: Academic Press. 508

    Google Scholar 

  • Burt, T P, Pinay G, Matheson F E, et al. 2002. Water table fluctuations in the riparian zone: Comparative results from a pan-European experiment. J Hydrol, 265: 129–148

    Article  Google Scholar 

  • Desilets D, Zreda M. 2013. Footprint diameter for a cosmic-ray soil moisture probe: Theory and Monte Carlo simulations. Water Resour Res, 49, doi: 10.1002/wrcr.20187

    Google Scholar 

  • Diekkrüger B, Arning M. 1995. Simulation of water fluxes using different methods for estimating soil parameters. Ecol Model, 81: 83–95

    Article  Google Scholar 

  • Drüe C, Ney P, Heinemann G, et al. 2012. Observation of atmosphere-forest exchange processes at the TERENO site Wüstebach. San Francisco: AGU Conference. 03-07 Dec, 2012, http://fallmeeting.agu.org/2012/files/2012/11/Druee_Wuestebach_Poster3.pdf

    Google Scholar 

  • Dwersteg D. 2012. Spatial and temporal variability of soil CO2 efflux in a spruce-dominated forest in the Eifel National Park, Germany. PhD Thesis. Bonn: University of Bonn. http://hss.ulb.uni-bonn.de/2012/2823/2823.htm. 138

    Google Scholar 

  • Ecomatik. 2002. User manual for radius dendrometer (Type DR) for measuring changes in radius of plant stems. Dachau: Ecomatik Umweltmess- und Datentechnik. 4

    Google Scholar 

  • Ecomatik. 2005. User manual for SF-L Sensor-Patent pending. Version 1.3. Dachau: Ecomatik Umweltmess-und Datentechnik. 9

    Google Scholar 

  • Etmann M. 2009. Dendrologische Aufnahmen im Wassereinzugsgebiet Oberer Wüstebach anhand verschiedener Mess-und Schätzverfahren. Master Thesis. Münster: University of Münster. 80

    Google Scholar 

  • Fang C, Moncrieff J. 1999. A model for soil CO2 production and transport 1: Model development. Agric For Meteorol, 95: 236–255

    Article  Google Scholar 

  • Gebler S, Hendricks-Franssen H J, Pütz T, et al. 2013. Simultaneous estimation of actual evapotranspiration and precipitation by weighable lysimeters and comparison with eddy covariance and rain gauge measurements. Proceed Gumpensteiner Lys, 15: 199–202

    Google Scholar 

  • Gonfiantini R. 1978. Standards for stable isotope measurements in natural compounds. Nature, 271: 534–536

    Article  Google Scholar 

  • Graf A, Bogena H, Hardelauf H, et al. 2014. Spatiotemporal relations between water budget components and soil water content patterns of a forested tributary catchment. Water Resour Res, doi: 10.1002/2013WR014516

    Google Scholar 

  • Granier A. 1985. Une nouvelle méthode pour la mesure du flux de sève brute dans le tronc de arbres. Ann Sci For, 42: 193–200

    Article  Google Scholar 

  • Hibbert A R. 1967. Forest treatment effects on water yield. In: Sopper W E, Lull H W, eds. International Symposiumon on Forest Hydrology. Oxford: Pergamon. 813

    Google Scholar 

  • HK100. 2009. Hydrogeological map of North Rhine-Westphalia (1:100000). Geological Survey North Rhine-Westphalia, Krefeld, Germany

    Google Scholar 

  • Huisman J A, Breuer L, Bormann H, et al. 2009. Assessing the impact of land use change on hydrology by ensemble modeling (LUCHEM) III: Scenario analysis. Adv Water Resour, 32: 159–170

    Article  Google Scholar 

  • Hulvey K B, Hobbs R J, Standish R J, et al. 2013. Benefits of tree mixes in carbon plantings. Nat Clim Chang, 3: 869–874, doi: 10.1038/nclimate1862

    Article  Google Scholar 

  • ICOS. 2014. Integrated Carbon Observation System. http://www.icos-infrastructure.eu, last verified 6 March, 2014

    Google Scholar 

  • Jensen K H and Illangasekare T H. 2011. HOBE—A hydrological observatory in Denmark. Vadose Zone J, 10: 1–7, doi: 10.2136/vzj2011.0006

    Article  Google Scholar 

  • Katul G G, Oren R, Manzoni S, et al. 2012. Evapotranspiration: A process driving mass transport and energy exchange in the soil-plant-atmosphere-climate system. Rev Geophysics, 50: 1–25, doi: 10.1029/2011RG000366

    Article  Google Scholar 

  • Kelliher F M, Leuning R, Schulze E D. 1993. Evaporation and canopy characteristics of coniferous forests and grasslands. Oecologia, 95: 153–163

    Article  Google Scholar 

  • Köstner B, Clausnitzer F. 2011. Die Transpiration eines Fichten-und Buchenbestandes unter Bodentrockenheit im Tharandter Wald. Waldökologie Landschaftsforschung und Naturschutz, 12: 29–35

    Google Scholar 

  • Lockaby G, Nagy C, Vose J M, et al. 2013. Water and Forests. In: Wear D N, Greis J G, eds. The Southern Forest Futures Project. USDA Forest Service, Southern Research Station. General Technical Report. Asheville, NC

    Google Scholar 

  • Lu P, Biron P, Bréda N, Granier A. 1995. Water relations of adult Norway spruce (Picea abies (L) Karst) under soil drought in The Vosges Mountains: Water potential, stomatal conductance and transpiration. Ann Sci For, 52: 117–129

    Article  Google Scholar 

  • Mauder M, Cuntz M, Drüe C, et al. 2013. A strategy for quality and uncertainty assessment of long-term eddy-covariance measurements. Agric For Meteorol, 169: 122–135

    Article  Google Scholar 

  • Neill C, Deegan L A, Thomas S M, et al. 2001. Deforestation for pasture alters nitrogen and phosphorus in small Amazonian streams. Ecol Appl, 11: 1817–1828

    Article  Google Scholar 

  • NEON. 2014. National Ecological Observation Network. http://www.neoninc.org. Last verified 6 March, 2014

    Google Scholar 

  • Reichstein M, Bahn M, Ciais P, et al. 2013. Climate extremes and the carbon cycle. Nature, 500: 287–295

    Article  Google Scholar 

  • Richter F. 2008. Bodenkarte zur Standorterkundung. Verfahren Quellgebiet Wüstebachtal (Forst). Geological Survey North Rhine-Westphalia, Krefeld, Germany

    Google Scholar 

  • Rosenbaum U, Bogena H R, Herbst M, et al. 2012. Seasonal and event dynamics of spatial soil moisture patterns at the small catchment scale. Water Resour Res, 48, W10544, doi: 10.1029/2011WR011518

    Article  Google Scholar 

  • Rosenbaum U, Huisman J A, Weuthen A, et al. 2010. Sensor-to-sensor variability of the ECH2O EC-5, TE and 5TE sensors in dielectric liquids. Vadose Zone J, 9: 181–186, doi: 10.2136/vzj2009.0036

    Article  Google Scholar 

  • Schmid H P, Oke T R. 1990. A model to estimate the source area contributing to turbulent exchange in the surface layer over patchy terrain. Q J R Meteorol Soc, 116: 965–988, doi: 10.1002/qj.49711649409

    Article  Google Scholar 

  • Stockinger M, Bogena H R, Lücke A, et al. 2014. Seasonal soil moisture pattern control transit time distributions in a forested headwater catchment. Water Resour Res, in press

    Google Scholar 

  • Subke J A, Inglima I, Cotrufo M S. 2006. Trends and methodological impacts in soil CO2 efflux partitioning: A meta-analytical review. Glob Chang Biol, 12: 921–943

    Article  Google Scholar 

  • Sucker C, von Wilpert K, Puhlmann H. 2011. Acidification reversal in low mountain range streams of Germany. Environ Monit Assess, 174: 65–89

    Article  Google Scholar 

  • TERN. 2014. Terrestrial Ecosystem Research Network. http://www.tern.org.au. Last verified 6 March, 2014

    Google Scholar 

  • Tobón C, Bruijnzeel L A, Frumau K F A, et al. 2010. Changes in soil physical properties after conversion of tropical mountain cloud forest to pasture in northern Costa Rica. In: Bruijnzeel L A, Scatena F N, Hamilton L S, eds. Tropical Montane Cloud Forests: Science for Conversion and Management. Cambridge: Cambridge University Press

    Google Scholar 

  • Van Dijk A, Moene A, de Bruin H. 2004. The principles of surface flux physics: Theory, practice and description of the ECPACK library. In: Meteorology and Air Quality Group, ed. Wageningen: Wageningen University. 99

  • Vereecken H, Huisman J A, Bogena H R, et al. 2008. On the value of soil moisture measurements in vadose zone hydrology—A review. Water Resour Res, 44, W00D06, doi: 10.1029/2008WR006829

    Google Scholar 

  • Viville D, Biron P, Granier A, et al. 1993. Interception in a mountainous declining spruce stand in the Strengbach catchment (Vosges, France). J Hydrol, 144: 273–282, doi: 10.1016/0022-1694(93)90175-9

    Article  Google Scholar 

  • Weiler M, McGlynn B L, McGuire K J, et al. 2003. How does rainfall become runoff? A combined tracer and runoff transfer function approach. Water Resour Res, 39, doi: 10.1029/2003WR002331

  • Whelan M, Sanger L, Baker M, et al. 1998. Spatial patterns of throughfall and mineral ion deposition in a lowland Norway spruce (Picea abies) plantation at the plot scale. Atmos Environ, 32: 3493–3501

    Article  Google Scholar 

  • Williams C A, Vanderhoof M K, Khomik M, et al. 2013. Post-clearcut dynamics of carbon, water and energy exchanges in a midlatitude temperate, deciduous broadleaf forest environment. Glob Chang Biol, 20: 992–1007

    Article  Google Scholar 

  • Li X, Cheng G, Liu S, et al. 2013. Heihe Watershed Allied Telemetry Experimental Research (HiWATER): Scientific objectives and experimental design. Bull Amer Meteor Soc, 94: 1145–1160

    Article  Google Scholar 

  • Zacharias S, Bogena H, Samaniego L, et al. 2011. A network of terrestrial environmental observatories in Germany. Vadose Zone J, 10: 955–973

    Article  Google Scholar 

  • Zreda M, Desilets D, Ferré T P A, et al. 2008. Measuring soil moisture content non-invasively at intermediate spatial scale using cosmic-ray neutrons. Geophys Res Lett, 35, doi: 10.1029/2008GL035655

    Google Scholar 

  • Zreda M, Shuttleworth W J, Xeng X, et al. 2012. COSMOS: The COsmicray Soil Moisture Observing System. Hydrol Earth Syst Sci, 16: 4079–4099

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. R. Bogena.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bogena, H.R., Bol, R., Borchard, N. et al. A terrestrial observatory approach to the integrated investigation of the effects of deforestation on water, energy, and matter fluxes. Sci. China Earth Sci. 58, 61–75 (2015). https://doi.org/10.1007/s11430-014-4911-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-014-4911-7

Keywords

Navigation