Classification improvement of local feature vectors over the KNN algorithm | Multimedia Tools and Applications
Skip to main content

Classification improvement of local feature vectors over the KNN algorithm

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

The KNN classification algorithm is particularly suited to be used when classifying images described by local features. In this paper, we propose a novel image classification approach, based on local descriptors and the KNN algorithm. The proposed scheme is based on a hierarchical categorization tree that uses both supervised and unsupervised classification techniques. The unsupervised one is based on a hierarchical lattice vector quantization algorithm, while the supervised one is based on both feature vectors labelling and supervised feature selection method. The proposed tree improves the effectiveness of local feature vector classification and outperforms the exact KNN algorithm in terms of categorization accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. This operation is done off-line.

References

  1. Amar CB, Zaied M, Alimi MA (2005) Beta wavelets. synthesis and application to lossy image compression. Adv Eng Softw 36(7):459–474

    Article  MATH  Google Scholar 

  2. Athitsos V, Sclaroff S (2005) Boosting nearest neighbor classifiers for multiclass recognition. In: CVPR ‘05, IEEE Computer Society, Washington, DC

    Google Scholar 

  3. Bellil W, Amar CB, Alimi MA (2003) Beta wavelet based image compression. In: International conference on signal system and design SSD03, pp 77–82

  4. Bouteldja N, Gouet-Brunet V, Scholl M (2006) Evaluation of strategies for multiple sphere queries with local image descriptors. In: IST/SPIE conference on multimedia content analysis, management, and retrieval. San Jose, CA

  5. Claveau V, Tirilly P, Gros P (2008) Language modeling for bag-of visual words image categorization. In: CIVR ’08: proceedings of the 2008 international conference on content-based image and video retrieval, pp 249–258

  6. Everingham M, Gool LV, Williams CKI, JohnWinn, Zisserman, A (2009) The PASCAL visual object classes (VOC) challenge. Int J Comput Vis (2009). doi:10.1007/s11263-009-0275-4

    Google Scholar 

  7. Garcia V, Debreuve E, Barlaud (2008) Fast k nearest neighbor search using GPU. CVPR workshop on computer vision on GPU

  8. Giuseppe A, Falchi F (2010) kNN based image classification relying on local feature similarity. SISAP, pp 101–108

  9. Griffin G, Holub A, Perona P (2007) Caltech 256 object category dataset. Technical report UCB/CSD-04-1366, California Institute of Technology

  10. Grira N, Crucianu M, Boujemaa N (2005) Active semi supervised fuzzy clustering for image database categorization. In: 7th ACM SIGMM international workshop on multimedia information retrieval (MIR’05)

  11. Hauptmann AG, Ngo CW, Yang J, Jiang YG (2007) Evaluating bag of visual words representations in scene classification. Multimedia information retrieval, pp 197–206

  12. Kaski S, Kangas J, Kohonen T (1998) Bibliography of self-organizing map (SOM) papers: 1981–1997. Neural Comput Surv 1:102–350

    Google Scholar 

  13. Kimura A, Kawanishi T, Kashino K (2004) Similarity-based partial image retrieval guaranteeing same accuracy as exhaustive matching. In: Proc. international conference on multimedia and expo (ICME2004), vol 3. Taipei, Taiwan, pp 1895–1898

  14. Li J, Wang JZ (2003) Automatic linguistic indexing of pictures by a statistical modeling approach. IEEE Trans Pattern Anal Mach Intell 25:1075–1088

    Article  Google Scholar 

  15. Mejdoub M, Fonteles L, Benamar C, Antonini M (2007) Extraction d’une signature floue se basant sur la combinaison de différentes bases d’ondelettes. Traitement et analyse d’images méthodes et applications TAIMA

  16. Mejdoub M, Fonteles L, Benamar C, Antonini M (2007) Fast algorithm for image database indexing based on lattice. In: 15th European signal processing conference, EUSIPCO. Pologne, pp 1799–1803

  17. Mejdoub M, Fonteles L, Benamar C, Antonini M, (2007) Image retrieval system based on the beta wavelet transform. In: International conference on signal system and devices, SSD

  18. Mejdoub M, Fonteles L, Benamar C, Antonini M (2008) Fast indexing method for image retrieval using tree-structured lattices. In: IEEE workshop on content based multimedia indexing, CBMI, London

  19. Mejdoub M, Fonteles L, Benamar C, Antonini M (2009) Embedded lattices tree: an efficient indexing scheme for content based retrieval on image databases. J Vis Commun Image Represent 20:145–156

    Article  Google Scholar 

  20. Mounira T, Lamrous S, Touati S (2007) Non-overlapping hierarchical index structure for similarity search. Int J Comput Sci 3(1):1544–1559

    Google Scholar 

  21. Moureaux J, Loyer P, Antonini M (1998) Low complexity indexing method for \(\textsc{Z}^n\) and \(\textsc{D}_n\) lattice quantizers. IEEE Trans Commun 46(12):1602–1609

    Article  MATH  Google Scholar 

  22. Mouret M, Solnon C, Wolf C (2009) Classification of images based on hidden Markov models. In: 7th international workshop on content-based multimedia indexing, pp 169–174

  23. Piro P, Anthoine S, Debreuve E, Barlaud M (2009) Sparse multiscale patches (SMP) for image categorization. In: Advances in multimedia modeling. Sophia-Antipolis, France

  24. Tao Y, Skubic, M, Han TY, Xia, Chi X (2010) Performance Evaluation of SIFT-Based Descriptors for Object Recognition. In: Proceedings of the international multiconference of engineers and computer scientisits, IMECS

  25. Todorovic S, Ahuja N (2006) Extracting subimages of an unknown category from a set of images. In: CVPR

  26. Van de Sande K, Gevers T, Snoek C (2008) A comparison of color features for visual concept classification. In: CIVR, pp 141–150

  27. Weinberger KQ, Blitzer J, Saul LK (2005) Distance metric learning for large margin nearest neighbor classification. In: NIPS

  28. Zhang H, Berg AC, Maire M (2006) Discriminative nearest neighbor classification for visual category recognition. In: CVPR 06, IEEE computer society, Los Alamitos, CA, pp 2126–2136

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahmoud Mejdoub.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mejdoub, M., Ben Amar, C. Classification improvement of local feature vectors over the KNN algorithm. Multimed Tools Appl 64, 197–218 (2013). https://doi.org/10.1007/s11042-011-0900-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-011-0900-4

Keywords