Hindcasting water clarity from Landsat satellite images of unmonitored shallow lakes in the Waikato region, New Zealand | Environmental Monitoring and Assessment
Skip to main content

Hindcasting water clarity from Landsat satellite images of unmonitored shallow lakes in the Waikato region, New Zealand

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Cost-effective monitoring is necessary for all investigations of lake ecosystem responses to perturbations and long-term change. Satellite imagery offers the opportunity to extend low-cost monitoring and to examine spatial and temporal variability in water clarity data. We have developed automated procedures using Landsat imagery to estimate total suspended sediments (TSS), turbidity (TURB) in nephlometric turbidity units (NTU) and Secchi disc transparency (SDT) in 34 shallow lakes in the Waikato region, New Zealand, over a 10-year time span. Fifty-three Landsat 7 Enhanced Thematic Mapper Plus images captured between January 2000 and March 2009 were used for the analysis, six of which were captured within 24 h of physical in situ measurements for each of 10 shallow lakes. This gave 32–36 usable data points for the regressions between surface reflectance signatures and in situ measurements, which yielded r 2 values ranging from 0.67 to 0.94 for the three water clarity variables. Using these regressions, a series of Arc Macro Language scripts were developed to automate image preparation and water clarity analysis. Minimum and maximum in situ measurements corresponding to the six images were 2 and 344 mg/L for TSS, 75 and 275 NTU for TURB, and 0.05 and 3.04 m for SDT. Remotely sensed water clarity estimates showed good agreement with temporal patterns and trends in monitored lakes and we have extended water clarity datasets to previously unmonitored lakes. High spatial variability of TSS and water clarity within some lakes was apparent, highlighting the importance of localised inputs and processes affecting lake clarity. Moreover, remote sensing can give a whole lake view of water quality, which is very difficult to achieve by in situ point measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig 7

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Allan, M. G., Hamilton, D. P., Hicks, B. J., & Brabyn, L. (2011). Landsat remote sensing of chlorophyll a concentrations in central North Island lakes of New Zealand. International Journal of Remote Sensing, 32(7), 2037–2055.

    Article  Google Scholar 

  • Allee, R. J., & Johnson, J. E. (1999). Use of satellite imagery to estimate surface chlorophyll a and Secchi disc depth of Bull Shoals Reservoir, Arkansas, USA. International Journal of Remote Sensing, 20(6), 1057–1072.

    Article  Google Scholar 

  • Alparslan, E., Aydöner, C., Tufekci, V., & Tüfekci, H. (2007). Water quality assessment at Ömerli Dam using remote sensing techniques. Environmental Monitoring and Assessment, 135(1–3), 391–398.

    Article  CAS  Google Scholar 

  • Carlson, R. E. (1977). A trophic state index for lakes. Limnology and Oceanography, 22(2), 361–369.

    Article  CAS  Google Scholar 

  • Chavez, P. S., Jr. (1996). Image based atmospheric corrections—revisited and improved. Photogrammetric Engineering & Remote Sensing, 62(9), 1025–1036.

    Google Scholar 

  • Chipman, J. W., Lillesand, T. M., Schmaltz, J. E., Leale, J. E., & Nordheim, M. J. (2004). Mapping lake water clarity with Landsat images in Wisconsin, USA. Canadian Journal of Remote Sensing, 30(1), 1–7.

    Article  Google Scholar 

  • Collier, K., Hamilton, D., & Vant, W. (Eds.). (2010). The Waters of the Waikato: Ecology of New Zealand’s longest river. Hamilton: Environment Waikato and the Centre for Biodiversity and Ecology Research.

    Google Scholar 

  • Curran, P. J. (1985). Principles of remote sensing. London: Longman.

    Google Scholar 

  • Davies-Colley, R. J. (1988). Measuring water clarity with a black disk. Limnology and Oceanography, 33(4), 616–623.

    Article  Google Scholar 

  • Dekker, A., Vos, R., & Peters, S. (2002). Analytical algorithms for lake water TSM estimation for retrospective analyses of TM and SPOT sensor data. International Journal of Remote Sensing, 23, 15–35.

    Google Scholar 

  • Giardino, C., Pepe, M., Brivio, P. A., Ghezzi, P., & Zilioli, E. (2001). Detecting chlorophyll, Secchi disk depth and surface temperature in a sub-alpine lake using Landsat imagery. The Science of the Total Environment, 268(1–3), 19–29.

    Article  CAS  Google Scholar 

  • Guan, X., Li, J., & Booty, W. G. (2011). Monitoring Lake Simcoe water clarity using Landsat-5 TM images. Water Resources Management, 25(8), 2015–2033.

    Article  Google Scholar 

  • Hadjimitsis, D. G., Clayton, C. R. I., & Hope, V. S. (2004). An assessment of the effectiveness of atmospheric correction algorithms through the remote sensing of some reservoirs. International Journal of Remote Sensing, 25(18), 3651–3674.

    Article  Google Scholar 

  • Harrington, J. A., Jr., Schiebe, F. R., & Nix, J. F. (1992). Remote sensing of Lake Chicot, Arkansas: monitoring suspended sediments, turbidity, and Secchi depth with Landsat MSS Data. Remote Sensing of Environment, 39(1), 15–27.

    Article  Google Scholar 

  • Hedley, J. D., Harborne, A. R., & Mumby, P. J. (2005). Technical note: simple and robust removal of sun glint for mapping shallow-water benthos. International Journal of Remote Sensing, 26(10), 2107–2112.

    Article  Google Scholar 

  • Irish, R. R. (2000). Landsat 7 automatic cloud cover assessment. In S. S. Shen & M. R. Descour (Eds.) Algorithms for multispectral, hyperspectral, and ultraspectral imagery IV Proceedings of SPIE 4049, 348–355.

  • Karakaya, N., Evrendilek, F., Aslan, G., Gungor, K., & Karakas, D. (2011). Monitoring of lake water quality along with trophic gradient using landsat data. International Journal of Environmental Science and Technology, 8(4), 817–822.

    CAS  Google Scholar 

  • Kallio, K., Attila, J., Härmä, P., Koponen, S., Pulliainen, J., Hyytiäinen, U., et al. (2008). Landsat ETM+ images in the estimation of seasonal lake water quality in boreal river basins. Environmental Management, 42(3), 511–522.

    Article  Google Scholar 

  • Kirk, J. T. O. (1985). Effects of suspensoids (turbidity) on penetration of solar radiation in aquatic ecosystems. Hydrobiologia, 125(1), 195–208.

    Article  Google Scholar 

  • Kloiber, S. M., Brezonik, P. L., & Bauer, M. E. (2002). Application of Landsat imagery to regional-scale assessments of lake clarity. Water Research, 36(17), 4330–4340.

    Article  CAS  Google Scholar 

  • Kloiber, S. M., Brezonik, P. L., Olmanson, L. G., & Bauer, M. E. (2002). A procedure for regional lake water clarity assessment using Landsat multispectral data. Remote Sensing of Environment, 82(1), 38–47.

    Article  Google Scholar 

  • Koponen, S. (2006). Remote sensing of water quality for Finnish lakes and coastal areas. Doctoral Dissertation, Helsinki University of Technology, Helsinki.

  • Landsat 2010. Landsat 7 science data users handbook. http://landsathandbook.gsfc.nasa.gov/handbook.html. Accessed 22 February, 2012.

  • Lathrop, R. G. (1992). Landsat Thematic Mapper monitoring of turbid inland water quality. Photogrammetric Engineering & Remote Sensing, 58(4), 465–470.

    Google Scholar 

  • Lathrop, R. G., & Lillesand, T. M. (1986). Use of Thematic Mapper data to assess water quality in Green Bay and central Lake Michigan. Photogrammetric Engineering & Remote Sensing, 52(5), 671–680.

    Google Scholar 

  • Lillesand, T. M., Johnson, W. L., Deuell, R. L., Lindstrom, O. M., & Meisner, D. E. (1983). Use of Landsat data to predict the trophic state of Minnesota lakes. Photogrammetric Engineering & Remote Sensing, 49(2), 219–229.

    Google Scholar 

  • McCullough, I. M., Loftin, C. S., & Sader, S. A. (2012). Combining lake and watershed characteristics with Landsat TM data for remote estimation of regional lake clarity. Remote Sensing of Environment, 123, 109–115.

    Article  Google Scholar 

  • Moran, M. S., Jackson, R. D., Slater, P. N., & Teillet, P. M. (1992). Evaluation of simplified procedures for retrieval of land surface reflectance factors from satellite sensor output. Remote Sensing of Environment, 41(2–3), 169–184.

    Article  Google Scholar 

  • Nellis, M. D., Harrington, J. A., Jr., & Wu, J. (1998). Remote sensing of temporal and spatial variations in pool size, suspended sediment, turbidity, and Secchi depth in Tuttle Creek Reservoir, Kansas: 1993. Geomorphology, 21(3–4), 281–293.

    Article  Google Scholar 

  • Nelson, S. A. C., Soranno, P. A., Cheruvelil, K. S., Batzli, S. A., & Skole, D. L. (2003). Regional assessment of lake water clarity using satellite remote sensing. Journal of Limnology, 62(s1), 27–32.

    Google Scholar 

  • Novo, E. M. L. M., Steffen, C. A., & Braga, C. Z. F. (1991). Results of a laboratory experiment relating spectral reflectance to total suspended solids. Remote Sensing of Environment, 36(1), 67–72.

    Article  Google Scholar 

  • Olmanson, L. G., Bauer, M. E., & Brezonik, P. L. (2008). A 20-year Landsat water clarity census of Minnesota’s 10,000 lakes. Remote Sensing of Environment, 112, 4086–4097.

    Article  Google Scholar 

  • Preisendorfer, R. W. (1986). Secchi disk science: visual optics of natural waters. Limnology and Oceanography, 31(5), 909–926.

    Article  CAS  Google Scholar 

  • Pulliainen, J., Kallio, K., Eloheimo, K., Koponen, S., Servomaa, H., Hannonen, T., et al. (2001). A semi-operative approach to lake water quality retrieval from remote sensing data. The Science of the Total Environment, 268(1–3), 79–94.

    Article  CAS  Google Scholar 

  • Ritchie, J. C., Cooper, C. M., & Schiebe, F. R. (1990). The relationship of MSS and TM digital data with suspended sediments, chlorophyll, and temperature in Moon Lake, Mississippi. Remote Sensing of Environment, 33(2), 137–148.

    Article  Google Scholar 

  • Smith, D. G., Croker, G. F., & McFarlane, K. (1995). Human perception of water appearance. New Zealand Journal of Marine and Freshwater Research, 29(1), 29–43.

    Article  Google Scholar 

  • Wang, J.-J., Lu, X. X., Liew, S. C., & Zhou, Y. (2009). Retrieval of suspended sediment concentrations in large turbid rivers using Landsat ETM+: an example from the Yangtze River, China. Earth Surface Processes and Landforms, 34(8), 1082–1092.

    Article  Google Scholar 

  • Wu, G. G., De Leeuw, J., Skidmore, A. K., Prins, H. H. T., & Liu, Y. (2008). Comparison of MODIS and Landsat TM5 images for mapping tempo-spatial dynamics of Secchi disk depths in Poyang Lake National Nature Reserve, China. International Journal of Remote Sensing, 29(8), 2183–2198.

    Article  Google Scholar 

  • Xu, H. (2006). Modification of Normalised Difference Water Index (NDWI) to enhance open water features in remotely sensed imagery. International Journal of Remote Sensing, 27(14), 3025–3033.

    Article  Google Scholar 

  • Zhao, D., Cai, Y., Jiang, H., Xu, D., Zhang, W., & An, S. (2011). Estimation of water clarity in Taihu Lake and surrounding rivers using Landsat imagery. Advances in Water Resources, 34(2), 165–173.

    Article  Google Scholar 

Download references

Acknowledgments

We thank Waikato Regional Council sincerely for access to their water quality data. We also thank Kevin Collier and David Hamilton for constructive criticism of the manuscript. This study was funded by the NZ Ministry of Business, Innovation and Employment contract UOWX0505.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brendan J. Hicks.

Appendices

Appendix 1

Table 7.

Appendix 1 Predicted yearly mean TSS calculated from equation 6 (Table 4) from measured in situ TSS measurements and Landsat 7 EMT+ band 4 reflectance for 2000–2009 for 34 shallow Waikato lakes. Number of images (n) for each year may not have all been used for each lake due to cloud cover

Appendix 2

Table 8.

Appendix 2 Predicted yearly mean SDT calculated from Eq. 8 (Table 4) from measured in situ SDT measurements and Landsat 7 EMT+ reflectance from bands 1 and 3 for 2000–2009 for 34 shallow Waikato lakes. Number of images (n) for each year may not have all been used for each lake due to cloud cover

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hicks, B.J., Stichbury, G.A., Brabyn, L.K. et al. Hindcasting water clarity from Landsat satellite images of unmonitored shallow lakes in the Waikato region, New Zealand. Environ Monit Assess 185, 7245–7261 (2013). https://doi.org/10.1007/s10661-013-3098-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-013-3098-2

Keywords