“Artificial micro organs”—a microfluidic device for dielectrophoretic assembly of liver sinusoids | Biomedical Microdevices Skip to main content
Log in

“Artificial micro organs”—a microfluidic device for dielectrophoretic assembly of liver sinusoids

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

In order to study possible toxic side effects of potential drug compounds in vitro a reliable test system is needed. Predicting liver toxicity presents a major challenge of particular importance as liver cells grown in a cell culture suffer from a rapid loss of their liver specific functions. Therefore we are developing a new microfluidic test system for liver toxicity. This test system is based on an organ-like liver 3D co-culture of hepatocytes and endothelial cells. We devised a microfluidic chip featuring cell culture chambers with integrated electrodes for the assembly of liver sinusoids by dielectrophoresis. Fluid channels enable an organ-like perfusion with culture media and test compounds. Different chamber designs were studied and optimized with regard to dielectrophoretic force distribution, hydrodynamic flow profile, and cell trapping rate using numeric simulations. Based on simulation results a microchip was injection-moulded from COP. This chip allowed the assembly of viable hepatocytes and endothelial cells in a sinusoid-like fashion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • P. Chao, T. Maguire, E. Novik, K.C. Cheng, M.L. Yarmush, Biochem. Pharmacol. 78, 625–632 (2009)

    Article  Google Scholar 

  • E.B. Cummings, A.K. Singh, Anal. Chem. 75, 4724–4731 (2003)

    Article  Google Scholar 

  • K. Domansky, W. Inman, J. Serdy, A. Dash, M.H.M. Lim, L.G. Griffith, Lab Chip 10, 51–58 (2010)

    Article  Google Scholar 

  • G. Fuhr, P. Rösch, T. Müller, V. Dressler, H. Göring, Plant Cell Physiol. 31, 975–985 (1990)

    Google Scholar 

  • R. Gebhardt, A. Hovhannisyan, Dev. Dyn. 239, 45–55 (2010)

    Google Scholar 

  • R. Gebhardt, J.G. Hengstler, D. Muller, R. Glockner, P. Buenning, B. Laube, E. Schmelzer, M. Ullrich, D. Utesch, N. Hewitt, M. Ringel, B.R. Hilz, A. Bader, A. Langsch, T. Koose, H.J. Burger, J. Maas, F. Oesch, Drug Metab. Rev. 35, 145–213 (2003)

    Article  Google Scholar 

  • L.J. Gershell, J.H. Atkins, Nat. Rev. Drug Discov. 2, 321–327 (2003)

    Article  Google Scholar 

  • C.-T. Ho, R.-Z. Lin, W.-Y. Chang, H.-Y. Chang, C.-H. Liu, Lab Chip 6, 724–734 (2006)

    Article  Google Scholar 

  • T.B. Jones, Electro mechanics of particles (Cambridge University Press, Cambridge, 1995)

    Book  Google Scholar 

  • B.H. Lapizco-Encinas, B.A. Simmons, E.B. Cummings, Y. Fintschenko, Anal. Chem. 76, 1571–1579 (2004)

    Article  Google Scholar 

  • B.H. Lapizco-Encinas, R.V. Davalos, B.A. Simmons, E.B. Cummings, Y. Fintschenko, J. Microbiol, Meth. 62, 317–326 (2005)

    Google Scholar 

  • S.W. Lee, S.D. Yang, Y.W. Kim, Y.K. Kim, in Eng. Med. Biol. Soc., Proc. 16th Annual International Conf. IEEE, Baltimore, MD, USA, 1994, pp. 1019–1020

  • S. Masuda, M. Washizu, T. Nanba, IEEE Trans. Ind. Appl. 25, 732–737 (1989)

    Article  Google Scholar 

  • O. Morin, C. Normand, J. Cell, Physiol. 129, 103–110 (1986)

    Google Scholar 

  • R. Pethig, Crit. Rev. Biotechnol. 16(4), 331–348 (1996)

    Article  Google Scholar 

  • R. Pethig, G.H. Markx, Trends Biotechnol. 15, 426–431 (1997)

    Article  Google Scholar 

  • H.A. Pohl, Dielectrophoresis (Cambridge University Press, New York, 1978)

    Google Scholar 

  • M.J. Powers, K. Domansky, M.R. Kaazempur-Mofrad, A. Kalezi, A. Capitano, A. Upadhyaya, P. Kurzawski, K.E. Wack, D.B. Stolz, R. Kamm, L.G. Griffith, Biotechnol. Bioeng. 78, 257–269 (2002)

    Article  Google Scholar 

  • P.P.C. Poyck, R. Hoekstra, J.L.M. Vermeulen, A. van Wijk, R. Chamuleau, T.B.M. Hakvoort, T.M. van Gulik, W.H. Lamers, Cells Tissues Organs 188, 259–269 (2008)

    Article  Google Scholar 

  • J. Schütte, C. Freudigmann, K. Benz, J. Böttger, R. Gebhardt, M. Stelzle, Lab Chip, 2010

  • A. Sivaraman, J.K. Leach, S. Townsend, T. Iida, B.J. Hogan, D.B. Stolz, R. Fry, L.D. Samson, S.R. Tannenbaum, L.G. Griffith, Curr. Drug Metab. 6, 569–591 (2005)

    Article  Google Scholar 

  • R.J. Thomas, R. Bhandari, D.A. Barrett, A.J. Bennett, J.R. Fry, D. Powe, B.J. Thomson, K.M. Shakesheff, Cells Tissues Organs 181, 67–79 (2005)

    Article  Google Scholar 

  • Y.C. Toh, C. Zhang, J. Zhang, Y.M. Khong, S. Chang, V.D. Samper, D. van Noort, D.W. Hutmacher, H. Yu, Lab Chip 7, 302–309 (2007)

    Article  Google Scholar 

  • Y.C. Toh, T.C. Lim, D. Tai, G. Xiao, D. van Noort, H. Yu, Lab Chip 9, 2026–2035 (2009)

    Article  Google Scholar 

Download references

Acknowledgements

Funding for this research was provided by the German Ministry for Education and Research, BMBF, through grant 01GG0729.

The authors thank Johanna Stelzle for proof reading and editing of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Stelzle.

Additional information

Julia Schütte and Britta Hagmeyer contributed equally to this work

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schütte, J., Hagmeyer, B., Holzner, F. et al. “Artificial micro organs”—a microfluidic device for dielectrophoretic assembly of liver sinusoids. Biomed Microdevices 13, 493–501 (2011). https://doi.org/10.1007/s10544-011-9517-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10544-011-9517-7

Keywords

Navigation