Assay of glioma cell responses to an anticancer drug in a cell-based microfluidic device | Microfluidics and Nanofluidics Skip to main content
Log in

Assay of glioma cell responses to an anticancer drug in a cell-based microfluidic device

  • Research Paper
  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript

Abstract

Despite progress in research and treatment, the prognosis for patients with gliomas remains relatively dismal. As such, develop a new in vitro model is fast becoming a necessary step in efforts to improve research on malignant gliomas. Microfluidics, a potentially effective tool, has been increasingly applied in neuroscience and oncology studies. However, gliomas, the most common primary brain tumours, have not yet been treated with this application. In the current study, we developed a glioma-related research method using microfluidics. After successfully culturing rat C6 glioma cells for up to 7 days in a microfluidic device, we monitored cellular responses to the anticancer drug, colchicines, after which we analysed cell viability using propidium iodide (PI) staining. We recorded temporal changes in cell morphology at various concentrations of colchicine using an inverted microscope. Results show that the number of injured/dead cancer cells and morphological changes increased relative to the drug’s concentration and treatment frequency. These findings will be helpful in developing microfluidic device applications for future research on brain tumour therapy (for malignant gliomas and other types of tumours), for conducting cytotoxicity research in a biomimetic microenvironment, for developing glioma-related anticancer drugs, and for developing glial cell-based biosensors for glioma detection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aschhoff B (2000) Retrospective study of Ukrain treatment in 203 patients with advanced-stage tumors. Drugs Exp Clin Res 26:249–252

    Google Scholar 

  • Barbee KA (2005) Mechanical cell injury. Ann N Y Acad Sci 1066:67–84. doi:10.1196/annals.1363.006

    Article  Google Scholar 

  • Burg MB, Ferraris JD, Dmitrieva NI (2007) Cellular response to hyperosmotic stresses. Physiol Rev 87:1441–1474. doi:10.1152/physrev.00056.2006

    Article  Google Scholar 

  • Daniel KD, Kim GY, Vassiliou CC, Jalali-Yazdi F, Langer R, Cima MJ (2007) Multi-reservoir device for detecting a soluble cancer biomarke. Lab Chip 7:1288–1293. doi:10.1039/b705143c

    Article  Google Scholar 

  • Gómez-Sjöberg R, Leyrat AA, Pirone DM, Chen CS, Quake SR (2007) Versatile, fully automated, microfluidic cell culture system. Anal Chem 79:8557–8563. doi:10.1021/ac071311w

    Article  Google Scholar 

  • Grobben B, De Deyn PP, Slegers H (2002) Rat C6 glioma as experimental model system for the study of glioblastoma growth and invasion. Cell Tissue Res 310:257–270. doi:10.1007/s00441-002-0651-7

    Article  Google Scholar 

  • Gromeier M, Wimmer E (2001) Viruses for the treatment of malignant glioma. Curr Opin Mol Ther 3:503–508

    Google Scholar 

  • Guchelaar H, Vermes I, Koopmans RP, Reutelingsperger CPM, Haanen C (1998) Apoptosis- and necrosis-inducing potential of cladribine, cytarabine, cisplatin, and 5-fuorouracil in vitro: a quantitative pharmacodynamic model. Cancer Chemother Pharmacol 42:77–83. doi:10.1007/s002800050788

    Article  Google Scholar 

  • Hess KR, Broglio KR, Bondy ML (2004) Adult glioma incidence trends in the United States, 1977–2000. Cancer 101:2293–2299. doi:10.1002/cncr.20621

    Article  Google Scholar 

  • Jemal A, Siegel R, Ward E, Hao Y, Xu J, Murray T, Thun MJ (2008) Cancer statistics, 2008. CA Cancer J Clin 58:71–96. doi:10.3322/ca.2007.0010

    Article  Google Scholar 

  • Komen J, Wolbers F, Franke HR, Andersson H, Vermes I, van den Berg A (2008) Viability analysis and apoptosis induction of breast cancer cells in a microfluidic device: effect of cytostatic drugs. Biomed Microdevices 10:727–737. doi:10.1007/s10544-008-9184-5

    Article  Google Scholar 

  • Kristensen BW, Noer H, Gramsbergen JB, Zimmer J, Noraberg J (2003) Colchicine induces apoptosis in organotypic hippocampal slice cultures. Brain Res 964:264–278. doi:10.1016/S0006-8993(02)04080-5

    Article  Google Scholar 

  • Legler JM, Gloeckler Ries LA, Smith MA, Warren JL, Heineman EF, Kaplan RS, Linet MS (1999) Brain and other central nervous system cancers: recent trends in incidence and mortality. J Natl Cancer Inst 91:1382–1390

    Article  Google Scholar 

  • Ma B, Zhang G, Qin J, Lin B (2009) Characterization of drug metabolites and cytotoxicity assay simultaneously using an integrated microfluidic device. Lab Chip 9:232–238. doi:10.1039/b809117j

    Article  Google Scholar 

  • Mazia D, Schatten G, Sale W (1975) Adhesion of cells to surfaces coated with polylysine. J Cell Biol 66:198–200

    Article  Google Scholar 

  • McDonald JC, Duffy DC, Anderson JR, Chiu DT, Wu H, Schueller OJA, Whitesides GM (2000) Fabrication of microfluidic systems in poly(dimethylsiloxane). Electrophoresis 21:27–40. doi:10.1002/(sici)1522-2683(20000101)21

    Article  Google Scholar 

  • Nichols KE, Malkin D, Garber JE, Fraumeni JF Jr, Li FP (2001) Germ-line p53 mutations predispose to a wide spectrum of early-onset cancers. Cancer Epidemiol Biomarkers Prev 10:83–87

    Google Scholar 

  • Ohgaki H, Dessen P, Jourde B, Horstmann S, Nishikawa T, Di Patre PL, Burkhard C, Schüler D, Probst-Hensch NM, Maiorka PC, Baeza N, Pisani P, Yonekawa Y, Yasargil MG, Lütolf UM, Kleihues P (2004) Genetic pathways to glioblastoma: a population-based study. Cancer Res 64:6892–6899

    Article  Google Scholar 

  • Rainov NG, Ren H (2003) Gene therapy for human malignant brain tumors. Cancer J 9:180–188

    Article  Google Scholar 

  • Reardon DA, Rich JN, Friedman HS, Bigner DD (2006) Recent advances in the treatment of malignant astrocytoma. J Clin Oncol 24:1253–1265. doi:10.1200/jco.2005.04.5302

    Article  Google Scholar 

  • Rees J (2008) Neurological oncology. Medicine 36:609–615. doi:10.1383/medc.32.10.75.51497

    Article  Google Scholar 

  • Regehr KJ, Domenech M, Koepsel JT, Carver KC, Ellison-Zelski SJ, Murphy WL, Schuler LA, Alarid ET, Beebe DJ (2009) Biological implications of polydimethylsiloxane-based microfluidic cell culture. Lab Chip 9:2132–2139. doi:10.1039/b903043c

    Article  Google Scholar 

  • Stummer W, Pichlmeier U, Meinel T, Wiestler OD, Zanella F, Reulen HJ (2006) Fluorescence-guided surgery with 5-aminolevulinic acid for resection of malignant glioma: a randomised controlled multicentre phase III trial. Lancet Oncol 7:392–401. doi:10.1016/s1470-2045(06)70665-9

    Article  Google Scholar 

  • Takeda M, Suzuki Y, Obara N, Nagai Y (2000) Induction of apoptosis by colchicine in taste bud and epithelial cells of the mouse circumvallate papillae. Cell Tissue Res 302:391–395. doi:10.1007/s004410000294

    Article  Google Scholar 

  • Taylor AM, Blurton-Jones M, Rhee SW, Cribbs DH, Cotman CW, Jeon NL (2005) A microfluidic culture platform for CNS axonal injury, regeneration and transport. Nat Methods 2:599–605. doi:10.1038/nmeth777

    Article  Google Scholar 

  • Thorsen T, Maerkl SJ, Quake SR (2002) Microfluidic large-scale integration. Science 298:580–584. doi:10.1126/science.1076996

    Article  Google Scholar 

  • Walsh CL, Babin BM, Kasinskas RW, Foster JA, McGarry MJ, Forbes NS (2009) A multipurpose microfluidic device designed to mimic microenvironment gradients and develop targeted cancer therapeutics. Lab Chip 9:545–554. doi:10.1039/b810571e

    Article  Google Scholar 

  • Wang J, Ren L, Li L, Liu W, Zhou J, Yu W, Tong D, Chen S (2009) Microfluidics: a new cosset for neurobiology. Lab Chip 9:644–652. doi:10.1039/b813495b

    Article  Google Scholar 

  • Whitesides GM (2006) The origins and the future of microfluidics. Nature 442:368–373. doi:10.1038/nature05058

    Article  Google Scholar 

  • Wong ET, Brem S (2007) Taming glioblastoma: targeting angiogenesis. J Clin Oncol 25:4705–4706. doi:10.1200/jco.2007.13.1037

    Article  Google Scholar 

  • Wrensch M, Minn Y, Chew T, Bondy M, Berger MS (2002) Epidemiology of primary brain tumors: current concepts and review of the literature. Neuro Oncol 4:278–299. doi:10.1215/15228517-4-4-278

    Google Scholar 

  • Wu LY, Carlo DD, Lee LP (2008) Microfluidic self-assembly of tumor spheroids for anticancer drug discovery. Biomed Microdevices 10:197–202. doi:10.1007/s10544-007-9125-8

    Article  Google Scholar 

  • Ye N, Qin J, Liu X, Shi W, Lin B (2007) Characterizing doxorubicin-induced apoptosis in HepG2 cells using an integrated microfluidic device. Electrophoresis 28:1146–1153. doi:10.1002/elps.200600450

    Article  Google Scholar 

Download references

Acknowledgements

The authors are very grateful to Dr. Wenhao Yu at the Department of Pathology, Harvard Medical School, and Dr. Jing Zhou at the Department of Genetics and Genomics, School of Medicine, Boston University, for their helpful discussion. The authors would also like to acknowledge funding from the National Natural Science Foundation of China (No. 209 750 82; No. 207 750 59), the Ministry of Education of the People’s Republic of China (NCET-08-0464), the State Forestry Administration of the People’s Republic of China (No. 200904004), the Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry, and the Northwest A&F University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinyi Wang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 967 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, W., Sun, P., Yang, L. et al. Assay of glioma cell responses to an anticancer drug in a cell-based microfluidic device. Microfluid Nanofluid 9, 717–725 (2010). https://doi.org/10.1007/s10404-010-0584-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10404-010-0584-5

Keywords

Navigation