Initial assessment of the COMPASS/BeiDou-2 regional navigation satellite system | GPS Solutions Skip to main content
Log in

Initial assessment of the COMPASS/BeiDou-2 regional navigation satellite system

  • Original Article
  • Published:
GPS Solutions Aims and scope Submit manuscript

Abstract

An initial characterization and performance assessment of the COMPASS/BeiDou-2 regional navigation system is presented. Code and carrier phase measurements on up to three frequencies have been collected in March 2012 with a small regional network of monitoring stations. The signal and measurement quality are analyzed and compared with the Japanese Quasi Zenith Satellite System. A high level of stability is demonstrated for the inter-frequency carrier phase biases, which will facilitate the application of triple-frequency undifferenced ambiguity resolution techniques in future precise point positioning applications. The performance of the onboard Rubidium frequency standards is evaluated in comparison to ground-based hydrogen masers and shown to be well competitive with other GNSS satellite clocks. Precise orbit and clock solutions obtained in post-processing are used to study the presently achievable point positioning accuracy in COMPASS/BeiDou-2-only navigation. Finally, the benefit of triple-frequency measurements and extra-wide-lane ambiguity resolution is illustrated for relative positioning on a short baseline.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Chen HC, Huang YS, Chiang KW, Yang M, Rau RJ (2009) The performance comparison between GPS and BeiDou-2/COMPASS: a perspective from Asia. J Chin Inst Eng 32(5):679–689

    Article  Google Scholar 

  • Chen J, Wu B, Hu X, Zhou S, Cao Y, Wu X, Xing N (2012) Compass/Beidou: system status and initial service; IGS Workshop on GNSS Biases, 18–19 Jan 2012, University of Bern, Switzerland. URL: http://www.biasws2012.unibe.ch/pdf/bws12_2.3.4.pdf; last accessed 1 Mar 2012

  • CSNO (2011) BeiDou navigation satellite system signal in space interface control document (Test Version), China satellite navigation office December 2011. URL http://www.beidou.gov.cn/attach/2011/12/27/201112273f3be6124f7d4c7bac428a36cc1d1363.pdf; last accessed 2012/03/10

  • de Wilde W, Boon F, Sleewaegen JM, Wilms F (2007) More Compass points—tracking China’s MEO satellite on a hardware receiver. Inside GNSS 2(5):44–48

    Google Scholar 

  • Dupuis RT, Lynch TJ, Vaccaro JR, Watts ET (2010) Rubidium frequency standard for the GPS IIF program and modifications for the RAFSMOD program; ION-GNSS-2010, 21–24 Sep. 2010, Portland, OR, pp 781–788

  • Estey LH, Meertens CM (1999) TEQC: the multi-purpose toolkit for GPS/GLONASS data. GPS Solut 3(1):42–49

    Article  Google Scholar 

  • Flohrer T (2012) Classification of geosynchronous objects, GEN-DB-LOG-00086-OPS-GR, issue 14, Feb 2012. European Space Agency, ESA/ESOC, Darmstadt

    Google Scholar 

  • Gao GX, Chen A, Lo S, De Lorenzo D, Walter T, Enge P (2009) Compass-M1 broadcast codes in E2, E5b, and E6 frequency bands. IEEE J Sel Top in Signal Process 3(4):599–612. doi:10.1109/JSTSP.2009.2025635

    Article  Google Scholar 

  • Gao WG, Jiao WH, Xiao Y, Wang ML, Yuan HB (2011) An evaluation of the Beidou Time System (BDT). J Navig 64:S31–S39. doi:10.1017/S0373463311000452

    Article  Google Scholar 

  • Grelier T, Ghion A, Dantepal J, Ries L, DeLatour A., Issler J-L, Avila-Rodriguez JA, Wallner S, Hein GW (2007) Compass signal structure and first measurements, ION-GNSS-2007, Fort Worth, TX, September 2007, pp 3015–3024

  • Han C, Yang Y, Cai Z (2011) BeiDou navigation satellite system and its timescales. Metrologia 48:S213–S218. doi:10.1088/0026-1394/48/4/S13

    Article  Google Scholar 

  • Hauschild A, Montenbruck O (2009) Kalman-filter-based GPS clock estimation for near real-time positioning. GPS Solut 13(3):173–182. doi:10.1007/s10291-008-0110-3

    Article  Google Scholar 

  • Hauschild A, Montenbruck O, Sleewaegen JM, Huisman L, Teunissen P (2012) Characterization of Compass M-1 signals. GPS Solut 16(1):117–126. doi:10.1007/s10291-011-0210-3

    Article  Google Scholar 

  • Inaba N, Matsumoto A, Hase H, Kogure S, Sawabe M, Terada K (2009) Design concept of quasi zenith satellite system. Acta Astronaut 65:1068–1075. doi:10.1016/j.actaastro.2009.03.068

    Article  Google Scholar 

  • Julien O, Cannon ME, Alves P, Lachapelle G (2004) Triple frequency ambiguity resolution using GPS/Galileo. Eur J Navig 2(2):51–57

    Google Scholar 

  • Kee C, Parkinson B (1994) Calibration of multipath errors on GPS pseudorange measurements, ION-GPS-1994, Salt Lake City, UT, 20-23 Sep. 1994, pp. 353–362

  • Mallette LA, White J, Rochat P (2010) Space qualified frequency sources (clocks) for current and future GNSS applications. Position location and navigation symposium (PLANS), 2010, IEEE/ION, 4-6 May 2010, Indian Wells, CA, USA, pp 903–908. DOI 10.1109/PLANS.2010.5507225

  • Misra P, Enge P (2011) Global positioning system—signals, measurements, and performance. Ganga-Jamuna Press, Lincoln

    Google Scholar 

  • Montenbruck O, Hauschild A, Hessels U (2011a) Characterization of GPS/GIOVE sensor stations in the CONGO network. GPS Solut 15(3):193–205. doi:10.1007/s10291-010-0182-8

    Article  Google Scholar 

  • Montenbruck O, Hugentobler U, Dach R, Steigenberger P, Hauschild A (2011b) Apparent clock variations of the Block IIF-1 (SVN62) GPS satellite. GPS Solut. doi:10.1007/s10291-011-0232-x

    Google Scholar 

  • Montenbruck O, Steigenberger P, Schönemann E, Hauschild A, Hugentobler U, Dach R, Becker M (2011c) Flight characterization of new generation satellite clocks; ION-GNSS-2011, 21–23 Sep. 2011, Portland, Oregon

  • Pearlman MR, Degnan JJ, Bosworth JM (2002) The international laser ranging service. Adv Space Res 30(2):135–143. doi:10.1016/S0273-1177(02)00277-6

    Article  Google Scholar 

  • Rochat P (2010) Onboard atomic clocks in global navigation satellite system, SATW Congress 2010, 11 Nov. 2010, Zurich, Switzerland, Schweizerische Akademie der Technischen Wissenschaften

  • Steigenberger P, Hauschild A, Montenbruck O, Rodriguez-Solano C, Hugentobler U (2012) QZS-1 Orbit and clock determination, ION-ITM-2012, 30 Jan. -1 Feb. 2012. Newport Beach, California, p 1265

    Google Scholar 

  • Teunissen PJG (1995) The least squares ambiguity decorrelation adjustment: a method for fast GPS integer ambiguity estimation. J Geod 70(1–2):65–82. doi:10.1007/BF00863419

    Article  Google Scholar 

  • Teunissen PJG (1998) Success probability of integer GPS ambiguity rounding and bootstrapping. J Geod 72(10):606–612. doi:10.1007/s001900050199

    Article  Google Scholar 

  • Thoelert S, Erker S, Furthner J, Meurer M (2010) Latest signal in space analysis of GPS IIF, COMPASS and QZSS. 5th ESA workshop on satellite navigation technologies, NAVITEC’2010, 8–10 Dec. 2010, Noordwijk, Netherlands

  • Tiberius C, Pany T, Eissfeller B, Joosten P, Verhagen S (2002) 0.99999999 confidence ambiguity resolution with GPS and Galileo. GPS Solut 6(1–2):96–99. doi:10.1007/s10291-002-0022-6

    Article  Google Scholar 

  • Vannicola F, Beard R, White J, Senior K, Kubik A, Wilson D (2010) GPS Block IIF rubidium frequency standard life test; ION-GNSS-2010, 21-24 Sep. 2010, Portland, OR, pp 812–819

  • Waller P, Gonzalez F, Binda S, Sesia I, Tavella P, Hidalgo I, Tobias G (2009) Update on the in-orbit performances of GIOVE clocks. Proceedings EFTF 2009, pp 388–392

  • Yang F, Chen W, Wang Y, Li P (2008) Laser retro-reflector arrays on the Compass satellites. Proceedings of the 16th international workshop on laser ranging, 12–17 Oct. 2008, Poznan, Poland

  • Yang YX, Li JL, Xu JY, Tang J, Guo HR, He HB (2011) Contribution of the Compass satellite navigation system to global PNT users. Chin Sci Bull 56(26):2813–2819. doi:10.1007/s11434-011-4627-4

    Article  Google Scholar 

Download references

Acknowledgments

GNSS data from COMPASS/BeiDou-2 capable receivers where kindly provided by Curtin University of Technology (CUT), the Japanese Space Exploration Agency (JAXA) and Trimble Navigation Limited for the purpose of this study. Data from the KZN2 reference station are publicly made available by Kazan Federal University (KZU) within the frame of the Multi-GNSS Experiment (MGEX) of the International GNSS Service (IGS). We would also like to thank Nanyang University of Technology (NTU) and the University of New South Wales (UNSW) for hosting additional reference stations at their premises. Dedicated or updated firmware versions for the employed receivers have kindly been made available by Septentrio and Trimble which also offered intensive technical information and discussions. The authors gratefully acknowledge the support of all individuals and institutions that have supported this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oliver Montenbruck.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Montenbruck, O., Hauschild, A., Steigenberger, P. et al. Initial assessment of the COMPASS/BeiDou-2 regional navigation satellite system. GPS Solut 17, 211–222 (2013). https://doi.org/10.1007/s10291-012-0272-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10291-012-0272-x

Keywords

Navigation