Finger-vein network enhancement and segmentation | Pattern Analysis and Applications
Skip to main content

Finger-vein network enhancement and segmentation

  • Theoretical Advances
  • Published:
Pattern Analysis and Applications Aims and scope Submit manuscript

Abstract

Recently, an emerging biometric recognition based on human finger-vein patterns has received considerable attention. Due to light attenuation in imaging finger tissues, the finger-vein imagery is often seriously degraded. This makes network-based finger-vein feature representation greatly difficult in practice. In order to obtain perfect finger-vein networks, in this paper, we propose a novel scheme for venous region enhancement and finger-vein network segmentation. First, a method aimed at scattering removal, directional filtering and false vein information suppression is put forward to effectively enhance finger-vein images. Then, to achieve the high-fidelity extraction of finger-vein networks in an automated manner, a matting-based segmentation approach is presented considering the variations of veins in intensity and diameter. Extensive experiments are finally conducted to validate the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Uhl J-F, Gillot C (2007) Embryology and three-dimensional anatomy of the superficial venous system of the lower limbs. Phlebology 22(5):194–206

    Article  Google Scholar 

  2. Zharov V, Ferguson S, Eidt J, Howard P, Fink L, Waner M (2004) Infrared imaging of subcutaneous veins. Lasers Surg Med 34(1):56–61

    Article  Google Scholar 

  3. Guidolin D, Nico B, Mazzocchi G, Vacca A, Nussdorfer GG, Ribatti D (2004) Order and disorder in the vascular network. Leukemia 18:1745–1750

    Article  Google Scholar 

  4. Nguyen T, Unbekandt M, Fleury U (2007) The textural aspects of vessel formation during embryo development and their relation to gastrulation movements. Organogenesis 3(1):49–56

    Article  Google Scholar 

  5. Chang JB (2002) Textbook of angiology. Springer-Verlag Hong Kong Ltd., ISBN 0-3879-8449-6

  6. Truc P, Khan MA, Lee Y, Lee S, Kim T (2009) Vessel enhancement filter using directional filter bank. Comput Vis Image Underst 113(1):101–112

    Article  Google Scholar 

  7. Yang JF, Shi YH, Yang JL (2009a) Finger-vein recognition based on a bank of Gabor filters. In: Proceedings of ACCV, pp 374–383

  8. Yang JF, Yang JL, Shi YH (2009b) Finger-vein segmentation based on multi-channel even-symmetric gabor filters. In: Proceedings of the IEEE international conference on intelligent computing and intelligent systems, pp 500–503

  9. Yang JF, Yang JL, Shi YH (2009c) Combination of gabor wavelets and circular gabor filter for finger-vein extraction. In: Proceedings of 5th international conference on intelligent computing, pp 346–354

  10. Lee E, Park K (2009) Restoration method of skin scattering blurred vein image for finger vein recognition. Electron Lett 45(21):1074–1076

    Article  Google Scholar 

  11. Cheng R, Huang B, Wang Y, Zeng H, Xie S (2005) The optical model of human skin. Acta Laser Biol Sin 14:401–404

    Google Scholar 

  12. Xu J, Wei H, Li X, Wu G, Li D (2002) Optical characteristics of human veins tissue in kubelka-munk model at he-ne laser in vitro. J Optoelectron Laser 13(3):401–404

    Google Scholar 

  13. Miura N, Nagasaka A, Miyatake T (2004) Feature extraction of finger-vein patterns based on repeated line tracking and its application to personal identification. Mach Vis Appl 15(4):194–203

    Article  Google Scholar 

  14. Tang D, Huang B, Li R, Li W (2010) A person retrieval solution using finger vein patterns. In: Proceedings of international conference on pattern recognition, pp 1306–1309

  15. Hwan CJ, Wonseok S, Taejeong K, Rae LS, Chan KH (2009) Finger vein extraction using gradient normalization and principal curvature. SPIE 7251:1–9

    Google Scholar 

  16. Da WJ, Huan YS (2009) Driver identification using finger-vein patterns with radon transform and neural network. Expert Syst Appl 36:5793–5799

    Article  Google Scholar 

  17. Zhang Z, Wu D, Ma S, Ma J (2005) Multiscale feature extraction of finger-vein patterns based on wavelet and local interconnection structure neural network. Neural Netw Brain 1:1081–1084

    Google Scholar 

  18. Yang JF, Li X (2010) Efficient finger vein localization and recognition. In: Proceedings of international conference on pattern recognition, pp 1148–1151

  19. Dhawan AP, D’Alessandro B, Fu X (2010) Optical imaging modalities for biomedical applications. IEEE Rev Biomed Eng 3:69–92

    Article  Google Scholar 

  20. Delpy DT, Cope M (1997) Quantification in tissue near-infrared spectroscopy. Philos Trans R Soc Lond B 352:649–659

    Article  Google Scholar 

  21. Bashkatov AN, Genina EA, Kochubey VI, Tuchin VV (2005) Optical properties of human skin, subcutaneous and mucous tissues in the wavelength rang from 400 to 2000 nm. J Phys D Appl Phys 38(2005):2543–2555

    Article  Google Scholar 

  22. Sassaroli A et al Near-infrared spectroscopy for the study of biological tissue. http://ase.tufts.edu/biomedical/research/fantini/researchAreas/NearInfraredSpectroscopy.pdf

  23. Jean-Philippe T, Nicolas H (2009) Fast visibility restoration from a single color or gray level image. In: Proceedings of ICCV, pp 2201–2208

  24. Narasimhan SG, Nayar SK (2003) Contrast restoration of weather degraded images. IEEE Trans Pattern Anal Mach Intell 25(6):713–724

    Article  Google Scholar 

  25. Hautière N, Tarel J-P, Lavenant J, Aubert D (2006) Automatic fog detection and estimation of visibility distance through use of an onboard camera. Mach Vis Appl 17(1):8–20

    Article  Google Scholar 

  26. Daugman JG (1985) Uncertainty relation for resolution in space, spatial frequency, and orientation optimized by 2D visual cortical filters. J Opt Soc Am 2(7):1160–1169

    Article  Google Scholar 

  27. Lee TS (1996) Image representation using 2D Gabor wavelets. IEEE Trans Pattern Anal Mach Intell 18(10):959–971

    Article  Google Scholar 

  28. Yang J, Liu L, Jiang T, Fan Y (2003) A modified Gabor filter design method for fingerprint image enhancement. Pattern Recognit Lett 24(12):1805–1817

    Article  Google Scholar 

  29. Zhu Z, Lu H, Zhao Y (2007) Scale multiplication in odd Gabor transform domain for edge detection. J Vis Commun Image Represent 18(1):68–80

    Article  Google Scholar 

  30. Levin A, Lischinski D, Weiss Y (2008) A closed-form solution to natural image matting. IEEE Trans Pattern Anal Mach Intell 30(2):228–242

    Article  Google Scholar 

  31. Levin A, Rav-Acha A, Lischinski D (2008) Spectral matting.IEEE Trans Pattern Anal Mach Intell 30(10):1–14

    Article  Google Scholar 

  32. Haralick RM, Shapiro LG (2002) Computer and robot vision, vol I. Addison-Wesley Longman Publishing Co., Inc., Boston, MA

  33. Farid S, Ahmed F (2009) Application of Niblack’s method on images. In: Proceedings of international conference on emerging technologies, pp 280–286

  34. Yu CH, Qing HF, Zhang L (2008) A research on extracting low quality human finger vein pattern characteristics. In: Proceedings of international conference on bioinformatics and biomedical engineering, pp 1876–1879

  35. Kamarainen JK, Kälviäinen H (2006) Invariance properties of Gabor filter-based features-overview and applications. IEEE Trans Image Process 15(5):1088–1099

    Article  Google Scholar 

  36. Movellan RJ (2005) Tutorial on Gabor filters. Technical Report. MPLab Tutorials, Univ. of California, San Diego

Download references

Acknowledgments

This research work is jointly supported by NSFC (Grant No. 61073143), TJNSF (Grant No. 07ZCKFGX03700).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinfeng Yang.

Appendix

Appendix

Let ∆ω denote the frequency bandwidth in octaves, \(\triangle\varphi\) denote the half-magnitude orientation bandwidth, a m and b m respectively represent the short axis and the long axis of a half-magnitude profile of Gabor frequency response in mth scale, as shown in Fig. 18, the following relationships should be determined [27, 35, 36] to make half-magnitude profiles mutually tangent in the spatial frequency domain.

$$ \left\{ {\begin{array}{*{20}c} {\sigma _{m} = \sqrt {\ln 2/2} /(f_{m} \beta \pi )} \hfill \\ {f_{m} = \varsigma f_{{m - 1}} } \hfill \\ {\vartriangle \varphi \approx 2\arcsin (a_{m} /2f_{m} )} \hfill \\ \end{array} } \right., $$
(16)

where

$$ \left\{ {\begin{array}{*{20}c} {\beta = (2^{{\vartriangle \omega }} - 1)/(2^{{\vartriangle \omega }} + 1)} \hfill \\ {\varsigma = (1 + \beta )/(1 - \beta )} \hfill \\ \end{array} } \right., $$

Implementing Fourier transformation for G e mk (xy), the parameter a m can be derived as

$$ a_m=\frac{\gamma\sqrt{2\ln2}}{\sigma_m\pi}. $$
(17)

Refer to Eq. (16), we can obtain

$$ \sigma_m f_m= \frac{1}{\beta\pi}\sqrt{\frac{\ln2}{2}}. $$
(18)

Based on Eqs. (17, 18), and Fig. 18, we can reduce

$$ \triangle\varphi \approx 2\arcsin\left(\frac{\gamma\sqrt{2\ln2}}{2\pi\sigma_mf_m}\right)=2\arcsin(\gamma\beta). $$
(19)

Let N be the number of contours with minimum redundancy in a certain scale, \(\triangle\varphi=\pi/N\) is satisfying. Based on Eq. (19), the aspect ratio γ of the elliptical Gaussian envelope is approximately determined by

$$ \gamma\approx\sin\left(\frac{\pi}{2N}\right)/\beta. $$
(20)

Therefore, given four parameters ▵ωσ 1 (the biggest scale), M and N, a bank of even-symmetric Gabor filters with minimum redundancy can be designed accordingly.

Fig. 18
figure 18

Half-magnitude profiles in the frequency domain

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, J., Shi, Y. Finger-vein network enhancement and segmentation. Pattern Anal Applic 17, 783–797 (2014). https://doi.org/10.1007/s10044-013-0325-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10044-013-0325-y

Keywords