Abstract
Bridging laws are essential in predicting the mechanical behaviour of conventional short-fibre-reinforced composites and the emerging nanofibre-reinforced composites. In this paper, we first review some studies on the toughness of carbon nanotube-reinforced composites that is induced by the pull-out of the nanotubes from the matrix, and on the development of the corresponding bridging laws. A close examination of the available bridging laws for carbon nanotubes reveals that some fundamental issues need to be further addressed. We propose a simple nonlinear and smooth bridging law to describe the pull-out force–displacement behaviour of carbon nanotubes from a matrix. This law contains only two material parameters, reflects the basic features of the pull-out experiments, and is easy to use. We then use this bridging law to calculate the fracture toughness of carbon nanotube-reinforced nanocomposites and predict the pull-out force–displacement response of conventional short fibres that are grafted with carbon nanotubes. Some parametric studies are conducted to reveal the influence of various parameters at the nano- and micro-scale on these properties.



Similar content being viewed by others
References
Gojny, F.H., Wichmann, M.H.G., Kopke, U., Fiedler, B., Schulte, K.: Carbon nanotube-reinforced epoxy-compo sites: enhanced stiffness and fracture toughness at low nanotube content. Compos. Sci. Technol. 64(15), 2363–2371 (2004)
Schulte, K., Gojny, F.H., Wichmann, M.H.G., Fiedler, B.: Influence of different carbon nanotubes on the mechanical properties of epoxy matrix composites—a comparative study. Compos. Sci. Technol. 65(15–16), 2300–2313 (2005)
Xia, Z., Riester, L., Curtin, W.A., Li, H., Sheldon, B.W., Liang, J., Chang, B., Xu, J.M.: Direct observation of toughening mechanisms in carbon nanotube ceramic matrix composites. Acta Mater. 52(4), 931–944 (2004)
Schulte, K., Fiedler, B., Gojny, F.H., Wichmann, M.H.G., Nolte, M.C.M.: Fundamental aspects of nano-reinforced composites. Compos. Sci. Technol. 66(16), 3115–25 (2006)
Cho, J., Inam, F., Reece, M.J., Chlup, Z., Dlouhy, I., Shaffer, M.S.P., Boccaccini, A.R.: Carbon nanotubes: Do they toughen brittle matrices? J. Mater. Sci. 46(14), 4770–4779 (2011)
Wichmann, M.H.G., Schulte, K., Wagner, H.D.: On nanocomposite toughness. Compos. Sci. Technol. 68(1), 329–331 (2008)
Mukhopadhyay, A., Chu, B.T.T., Green, M.L.H., Todd, R.I.: Understanding the mechanical reinforcement of uniformly dispersed multiwalled carbon nanotubes in alumino-borosilicate glass ceramic. Acta Mater. 58(7), 2685–2697 (2010)
Tong, L.Y., Sun, X.N., Tan, P.: Effect of long multi-walled carbon nanotubes on delamination toughness of laminated composites. J. Compos. Mater. 42(1), 5–23 (2008)
Chen, Y.L., Liu, B., He, X.Q., Huang, Y., Hwang, K.C.: Failure analysis and the optimal toughness design of carbon nanotube-reinforced composites. Compos. Sci. Technol. 70(9), 1360–1367 (2010)
Lawrence, P.: Some theoretical considerations of fiber pull-out from an elastic matrix. J. Mater. Sci. 7(1), 1–6 (1972)
Seshadri, M., Saigal, S.: Crack bridging in polymer nanocomposites. J. Eng. Mech. ASCE 133(8), 911–918 (2007)
Needleman, A.: An analysis of tensile decohesion along an interface. J. Mech. Phys. Solids 38(3), 289–324 (1990)
Xu, X.P., Needleman, A.: Numerical simulations of fast crack-growth in brittle solids. J. Mech. Phys. Solids 42(9), 1397–1434 (1994)
Mirjalili, V., Hubert, P.: Modelling of the carbon nanotube bridging effect on the toughening of polymers and experimental verification. Compos. Sci. Technol. 70(10), 1537–1543 (2010)
Chen, X., Beyerlein, I.J., Brinson, L.C.: Bridged crack models for the toughness of composites reinforced with curved nanotubes. J. Mech. Phys. Solids 59(9), 1938–52 (2011)
Chen, X., Beyerlein, I.J., Brinson, L.C.: Curved-fiber pull-out model for nanocomposites. Part 1: bonded stage formulation. Mech. Mater. 41(3), 279–292 (2009)
Chen, X., Beyerlein, I.J., Brinson, L.C.: Curved-fiber pull-out model for nanocomposites. Part 2: interfacial debonding and sliding. Mech. Mater. 41(3), 293–307 (2009)
Pavia, F., Curtin, W.A.: Optimizing strength and toughness of nanofiber-reinforced CMCs. J. Mech. Phys. Solids 60(9), 1688–1702 (2012)
Li, V.C., Wang, Y., Backer, S.: Effect of inclining angle, bundling and surface-treatment on synthetic-fiber pull-out from a cement matrix. Composites 21(2), 132–140 (1990)
Kelly, A.: Interface effects and work of fracture of a fibrous composite. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 319(1536), 95–116 (1970)
Marshall, D.B., Cox, B.N., Evans, A.G.: The mechanics of matrix cracking in brittle-matrix fiber composites. Acta Metall. 33(11), 2013–2021 (1985)
Thouless, M.D., Evans, A.G.: Effects of pull-out on the mechanical-properties of ceramic-matrix composites. Acta Metall. 36(3), 517–522 (1988)
Li, V.C., Wang, Y.J., Backer, S.: A micromechanical model of tension-softening and bridging toughening of short random fiber reinforced brittle matrix composites. J. Mech. Phys. Solids 39(5), 607–625 (1991)
Kim, J.K., Mai, Y.W.: High-strength, high fracture-toughness fiber composites with interface control—a review. Compos. Sci. Technol. 41(4), 333–378 (1991)
Jain, L.K., Mai, Y.W.: In the effect of stitching on mode-I delamination toughness of laminated composites. Compos. Sci. Technol. 51(3), 331–345 (1994)
Karihaloo, B.L., Wang, J., Grzybowski, M.: Doubly periodic arrays of bridged cracks and short fibre-reinforced cementitious composites. J. Mech. Phys. Solids 44(10), 1565–1586 (1996)
Fu, S.Y., Lauke, B.: The fibre pull-out energy of misaligned short fibre composites. J. Mater. Sci. 32(8), 1985–1993 (1997)
Cartie, D.D.R., Cox, B.N., Fleck, N.A.: Mechanisms of crack bridging by composite and metallic rods. Compos. Part A Appl. Sci. Manuf. 35(11), 1325–1336 (2004)
Mouritz, A.P., Koh, T.M.: Re-evaluation of mode I bridging traction modelling for z-pinned laminates based on experimental analysis. Compos. Part B Eng. 56, 797–807 (2014)
Wegst, U.G.K., Bai, H., Saiz, E., Tomsia, A.P., Ritchie, R.O.: Bioinspired structural materials. Nat. Mater. 14(1), 23–36 (2015)
Barber, A.H., Cohen, S.R., Kenig, S., Wagner, H.D.: Interfacial fracture energy measurements for multi-walled carbon nanotubes pulled from a polymer matrix. Compos. Sci. Technol. 64(15), 2283–2289 (2004)
Schadler, L.S., Giannaris, S.C., Ajayan, P.M.: Load transfer in carbon nanotube epoxy composites. Appl. Phys. Lett. 73(26), 3842–3844 (1998)
Chang, B.H., Liu, Z.Q., Sun, L.F., Tang, D.S., Zhou, W.Y., Wang, G., Qian, L.X., Xie, S.S., Fen, J.H., Wan, M.X.: Conductivity and magnetic susceptibility of nanotube/polypyrrole nanocomposites. J. Low Temp. Phys. 119(1–2), 41–48 (2000)
Liao, K., Li, S.: Interfacial characteristics of a carbon nanotube-polystyrene composite system. Appl. Phys. Lett. 79(25), 4225–4227 (2001)
Cooper, C.A., Cohen, S.R., Barber, A.H., Wagner, H.D.: Detachment of nanotubes from a polymer matrix. Appl. Phys. Lett. 81(20), 3873–3875 (2002)
Wong, M., Paramsothy, M., Xu, X.J., Ren, Y., Li, S., Liao, K.: Physical interactions at carbon nanotube-polymer interface. Polymer 44(25), 7757–7764 (2003)
Barber, A.H., Cohen, S.R., Wagner, H.D.: Measurement of carbon nanotube-polymer interfacial strength. Appl. Phys. Lett. 82(23), 4140–4142 (2003)
Ding, W., Eitan, A., Fisher, F.T., Chen, X., Dikin, D.A., Andrews, R., Brinson, L.C., Schadler, L.S., Ruoff, R.S.: Direct observation of polymer sheathing in carbon nanotube-polycarbonate composites. Nano Lett. 3(11), 1593–1597 (2003)
Bower, C., Rosen, R., Jin, L., Han, J., Zhou, O.: Deformation of carbon nanotubes in nanotube-polymer composites. Appl. Phys. Lett. 74(22), 3317–3319 (1999)
Qian, D., Dickey, E.C.: In-situ transmission electron microscopy studies of polymer–carbon nanotube composite deformation. J. Microsc. Oxf. 204, 39–45 (2001)
Watts, P.C.P., Hsu, W.K.: Behaviours of embedded carbon nanotubes during film cracking. Nanotechnology 14(5), L7–L10 (2003)
Yu, M.F., Lourie, O., Dyer, M.J., Moloni, K., Kelly, T.F., Ruoff, R.S.: Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load. Science 287(5453), 637–640 (2000)
Frankland, S.J.V., Harik, V.M.: Analysis of carbon nanotube pull-out from a polymer matrix. Surf. Sci. 525(1–3), L103–L108 (2003)
Yang, L., Tong, L., He, X.: MD simulation of carbon nanotube pullout behavior and its use in determining mode i delamination toughness. Comput. Mater. Sci. 55, 356–364 (2012)
Yang, L., Tong, L., He, X., Wagner, H.D., Wang, R.: Molecular dynamic simulation of oblique pullout of carbon nanotube from resin. Comput. Mater. Sci. 83, 504–12 (2014)
Leung, C.K.Y., Ybanez, N.: Pullout of inclined flexible fiber in cementitious composite. J. Eng. Mech. ASCE 123(3), 239–246 (1997)
DiFrancia, C., Ward, T.C., Claus, R.O.: The single-fibre pull-out test. 1. Review and interpretation. Compos. Part A Appl. Sci. Manuf. 27(8), 597–612 (1996)
Dai, S.C., Yan, W.Y., Liu, H.Y., Mai, Y.W.: Experimental study on z-pin bridging law by pullout test. Compos. Sci. Technol. 64(16), 2451–2457 (2004)
Plain, K.P., Tong, L.: Experimental validation of theoretical traction law for inclined through-thickness reinforcement. Compos. Struct. 91(2), 148–157 (2009)
Gopalaratnam, V.S., Shah, S.P.: Tensile failure of steel fiber-reinforced mortar. J. Eng. Mech. ASCE 113(5), 635–652 (1987)
Karihaloo, B.L., Murthy, A.R., Iyer, N.R.: Determination of size-independent specific fracture energy of concrete mixes by the tri-linear model. Cem. Concr. Res. 49, 82–88 (2013)
Bao, G., Suo, Z.: Remarks on crack bridging concepts. Appl. Mech. Rev. 45, 355–366 (1992)
Qian, D., Dickey, E.C., Andrews, R., Rantell, T.: Load transfer and deformation mechanisms in carbon nanotube-polystyrene composites. Appl. Phys. Lett. 76(20), 2868–2870 (2000)
Chowdhury, S.C., Okabe, T.: Computer simulation of carbon nanotube pull-out from polymer by the molecular dynamics method. Compos. Part A Appl. Sci. Manuf. 38(3), 747–754 (2007)
Wernik, J.M., Cornwell-Mott, B.J., Meguid, S.A.: Determination of the interfacial properties of carbon nanotube reinforced polymer composites using atomistic-based continuum model. Int. J. Solids Struct. 49(13), 1852–1863 (2012)
Li, Y., Liu, S., Hu, N., Han, X., Zhou, L., Ning, H., Wu, L., Alamusi, Yamamoto, G., Chang, C., Hashida, T., Atobe, S., Fukunaga, H.: Pull-out simulations of a capped carbon nanotube in carbon nanotube-reinforced nanocomposites. J. Appl. Phys. 113(14), 144304 (2013)
Wagner, H.D.: Nanotube-polymer adhesion: a mechanics approach. Chem. Phys. Lett. 361(1–2), 57–61 (2002)
Lau, K.T.: Interfacial bonding characteristics of nanotube/polymer composites. Chem. Phys. Lett. 370(3–4), 399–405 (2003)
Xiao, K.Q., Zhang, L.C.: The stress transfer efficiency of a single-walled carbon nanotube in epoxy matrix. J. Mater. Sci. 39(14), 4481–4486 (2004)
Xiao, T., Liao, K.: A nonlinear pullout model for unidirectional carbon nanotube-reinforced composites. Compos. Part B Eng. 35(3), 211–217 (2004)
Haque, A., Ramasetty, A.: Theoretical study of stress transfer in carbon nanotube reinforced polymer matrix composites. Compos. Struct. 71(1), 68–77 (2005)
Gao, X.L., Li, K.: A shear-lag model for carbon nanotube-reinforced polymer composites. Int. J. Solids Struct. 42(5–6), 1649–1667 (2005)
Nuriel, S., Katz, A., Wagner, H.D.: Measuring fiber-matrix interfacial adhesion by means of a ‘drag-out’ micromechanical test. Compos. Part A Appl. Sci. Manuf. 36(1), 33–37 (2005)
He, X., Wang, C., Tong, L., Li, Y., Peng, Q., Mei, L., Wang, R.: A pullout model for inclined carbon nanotube. Mech. Mater. 52, 28–39 (2012)
Wang, J., Karihaloo, B.L.: Material instability in the tensile response of short-fibre-reinforced quasi-brittle composites. Arch. Mech. 52(4–5), 839–855 (2000)
Wang, J.: Overall moduli and constitutive relations of bodies containing multiple bridged microcracks. Int. J. Solids Struct. 39(8), 2203–2214 (2002)
Tatarko, P., Grasso, S., Porwal, H., Chlup, Z., Saggar, R., Dlouhy, I., Reece, M.J.: Boron nitride nanotubes as a reinforcement for brittle matrices. J. Eur. Ceram. Soc. 34(14), 3339–3349 (2014)
Cox, H.L.: The elasticity and strength of paper and other fibrous materials. Br. J. Appl. Phys. 3(MAR), 72–79 (1952)
Dondero, W.E., Gorga, R.E.: Morphological and mechanical properties of carbon nanotube/polymer composites via melt compounding. J. Polym. Sci. Part B Polym. Phys. 44(5), 864–878 (2006)
Thostenson, E.T., Li, C.Y., Chou, T.W.: Nanocomposites in context. Compos. Sci. Technol. 65(3–4), 491–516 (2005)
Thostenson, E.T., Li, W.Z., Wang, D.Z., Ren, Z.F., Chou, T.W.: Carbon nanotube/carbon fiber hybrid multiscale composites. J. Appl. Phys. 91(9), 6034–6037 (2002)
Wang, C., Li, Y., Tong, L., Song, Q., Li, K., Li, J., Peng, Q., He, X., Wang, R., Jiao, W., Du, S.: The role of grafting force and surface wettability in interfacial enhancement of carbon nanotube/carbon fiber hierarchical composites. Carbon 69, 239–246 (2014)
Jia, Y., Chen, Z., Yan, W.: A numerical study on carbon nanotube-hybridized carbon fibre pullout. Compos. Sci. Technol. 91, 38–44 (2014)
Hutchinson, J.W., Jensen, H.M.: Models of fiber debonding and pullout in brittle composites with friction. Mech. Mater. 9(2), 139–163 (1990)
Cox, B.N., Sridhar, N.: A traction law for inclined fiber tows bridging mixed-mode cracks. Mech. Adv. Mater. Struct. 9(4), 299–331 (2002)
Cox, B.N.: Snubbing effects in the pullout of a fibrous rod from a laminate. Mech. Adv. Mater. Struct. 12(2), 85–98 (2005)
Plain, K.P., Tong, L.: Traction law for inclined through-thickness reinforcement using a geometrical approach. Compos. Struct. 88(4), 558–569 (2009)
Fu, S.Y., Yue, C.Y., Hu, X., Mai, Y.W.: Analyses of the micromechanics of stress transfer in single- and multi-fiber pull-out tests. Compos. Sci. Technol. 60(4), 569–579 (2000)
Johnson, K.L.: Contact Mechanics. Cambridge University Press, London (1985)
Andrews, R., Weisenberger, M.C.: Carbon nanotube polymer composites. Curr. Opin. Solid State Mater. Sci. 8(1), 31–37 (2004)
Shao, L.H., Luo, R.Y., Bai, S.L., Wang, J.: Prediction of effective moduli of carbon nanotube-reinforced composites with waviness and debonding. Compos. Struct. 87(3), 274–281 (2009)
Lu, Z., Chen, M., Yang, Z.: An improved pull-out model for the carbon nanotube/nanofiber-reinforced polymer composites with interfacial defects. Polym. Compos. (2015). doi:10.1002/pc.23174
Wang, J., Karihaloo, B.L.: Optimum in situ strength design of composite laminates.1. In situ strength parameters. J. Compos. Mater. 30(12), 1314–1337 (1996)
Wang, J., Tong, L.: A study of the vibration of delaminated beams using a nonlinear anti-interpenetration constraint model. Compos. Struct. 57(1–4), 483–488 (2002)
Qian, H., Bismarck, A., Greenhalgh, E.S., Kalinka, G., Shaffer, M.S.P.: Hierarchical composites reinforced with carbon nanotube grafted fibers: the potential assessed at the single fiber level. Chem. Mater. 20(5), 1862–1869 (2008)
Hung, K.H., Kuo, W.S., Ko, T.H., Tzeng, S.S., Yan, C.F.: Processing and tensile characterization of composites composed of carbon nanotube-grown carbon fibers. Compos. Part A Appl. Sci. Manuf. 40(8), 1299–1304 (2009)
Godara, A., Gorbatikh, L., Kalinka, G., Warrier, A., Rochez, O., Mezzo, L., Luizi, F., van Vuure, A.W., Lomov, S.V., Verpoest, I.: Interfacial shear strength of a glass fiber/epoxy bonding in composites modified with carbon nanotubes. Compos. Sci. Technol. 70(9), 1346–1352 (2010)
An, F., Lu, C., Li, Y., Guo, J., Lu, X., Lu, H., He, S., Yang, Y.: Preparation and characterization of carbon nanotube-hybridized carbon fiber to reinforce epoxy composite. Mater. Des. 33, 197–202 (2012)
Li, Y., Li, Y., Ding, Y., Peng, Q., Wang, C., Wang, R., Sritharan, T., He, X., Du, S.: Tuning the interfacial property of hierarchical composites by changing the grafting density of carbon nanotube using 1,3-propodiamine. Compos. Sci. Technol. 85, 36–42 (2013)
Chaboche, J.L., Girard, R., Levasseur, P.: On the interface debonding models. Int. J. Damage Mech. 6(3), 220–257 (1997)
Acknowledgments
J. Wang and L. Tong thank the support of the China Scholarship Council and the Australian Research Council via Discovery Project Grant (DP130103958). J. Wang also thanks the support of the National Natural Science Foundation of China (Grant Nos. 11232001 and 11521202). Miss Linjuan Wang is thanked for assistance with numerical calculations and figures.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Wang, J., Tong, L. & Karihaloo, B.L. A bridging law and its application to the analysis of toughness of carbon nanotube-reinforced composites and pull-out of fibres grafted with nanotubes. Arch Appl Mech 86, 361–373 (2016). https://doi.org/10.1007/s00419-015-1100-x
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00419-015-1100-x