Quaternion-based strap-down integration method for applications of inertial sensing to gait analysis | Medical & Biological Engineering & Computing Skip to main content

Advertisement

Log in

Quaternion-based strap-down integration method for applications of inertial sensing to gait analysis

  • Published:
Medical and Biological Engineering and Computing Aims and scope Submit manuscript

Abstract

The proposed strap-down integration method exploits the cyclical nature of human gait: during the gait swing phase, the quaternion-based attitude representation is integrated using a gyroscope from initial conditions that are determined during stance by an accelerometer. Positioning requires double time integration of the gravity-compensated accelerometer signals during swing. An interpolation technique applied to attitude quaternions was developed to improve the accuracy of orientation and positioning estimates by accounting for the effect of sensor bias and scale factor drifts. A simulation environment was developed for the analysis and testing of the proposed algorithm on a synthetic movement trajectory. The aim was to define the true attitude and positioning used in the computation of estimation errors. By thermal modelling, the changes of bias and scale factor of the inertial sensors, calibrated at a single reference temperature, were analysed over a range of ±10°C, for measurement noise standard deviations up to σg = 2.5° s−1 (gyroscope) and σa = 0.05 m s−1 (accelerometer). The compensation technique reduced the maximum root mean square errors (RMSEs) to: RMSEθ=14.6° (orientation) and RMSEd=17.7 cm (positioning) for an integration interval of one gait cycle (an improvement of 3° and 7 cm); RMSEθ=14.8° and RMSEd=30.0 cm for an integration interval of two gait cycles (an improvement of 11° and 262 cm).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abbott, E., andPowell, D. (1999): ‘Land-vehicle navigation using GPS’,Proc. IEEE,87, pp. 145–162

    Article  Google Scholar 

  • Aminian, K., Rezakhanlou, K., Andres, E. D., Fritsch, C., Levyraz, P.-F., andRobert, P. (1999): ‘Temporal feature estimation during walking using miniature accelerometers: an analysis of gait improvement after hip arthroplasty’,Med. Biol. Eng. Comput.,37, pp. 686–691

    Google Scholar 

  • Aminian, K., Najafi, B., Büla, C., Levyraz, P.-F., andRobert, P. (2002): ‘Spatio-temporal parameters of gait measured by an ambulatory system using miniature gyroscopes’,J. Biomech.,35, pp. 689–699

    Article  Google Scholar 

  • Analog Devices, Inc. (1999): ‘ADXL210E Technical Data Sheet’. http://www.analog.com

  • Bachmann, E. R. (2000): ‘Inertial and magnetic tracking of limb segment orientation for inserting humans in synthetic environments’. PhD thesis, Naval Postgraduate School, Monterrey, CA, USA

    Google Scholar 

  • Barshan, B., andDurrant-Whyte, H. F. (1994): ‘Evaluation of a solid-state gyroscope for robotics applications’,IEEE Trans. Instrum. Meas.,44, pp. 61–67

    Google Scholar 

  • Bortz, J. E. (1971): ‘A new mathematical formulation for strapdown inertial navigation’,IEEE Trans. Aerosp. Elec. Syst.,7, pp. 61–66

    Google Scholar 

  • Bussmann, J. B. J., Veltink, P. H., Koelma, F., Van Lummel, R. C., andStam, H. J. (1995): ‘Ambulatory monitoring of mobility-related activities: the initial phase of the development of an activity monitor’,Eur. J. Phys. Med. Rehab.,5, pp. 2–7

    Google Scholar 

  • Chou, J. C. K. (1992): ‘Quaternion kinematic and dynamic differential equations’,IEEE Trans. Rob. Automat.,8, pp. 53–64

    Google Scholar 

  • Ferraris, F., Grimaldi, U., andParvis, M. (1995): ‘Procedure for effortless in-field calibration of three-axis rate gyros and accelerometers’,Sensors Mater.,7, pp. 311–330

    Google Scholar 

  • Guillemaud, R., Caritu, Y., David, D., Favre-Réguillon, F., Fontaine, D., andBonnet, S. (2003): ‘Body motion capture for activity monitoring’.Int. Workshop on New Generation of Wearable Systems for eHealth, Dec. 11–14, Castelvecchio Pascoli, Lucca, Italy

  • Kirtley, C. (2001): ‘Summary: Quaternions vs. Euler angles’. BIOMCH-L Discussion, May 3, 2001, http://isb.ri.ccf.org/ biomch-1/archives/biomch-1-2001-05

  • Lötters, J. C., Schipper, J., Veltink, P. H., Olthius, W., andBergveld, P. (1998): ‘Procedure for in-use calibration of triaxial accelerometers in medical applications’,Sensors Actuators A,68, pp. 221–228

    Google Scholar 

  • Luinge, H. J. (2002): ‘Inertial sensing of human movement’. PhD thesis, University of Twente, Twente University Press, Enschede, The Netherlands

    Google Scholar 

  • Mayagoitia, R. E., Nene, A. V., andVeltink, P. H. (2002): ‘Accelerometer and rate gyroscopes measurement of kinematics: an inexpensive alternative to optical motion analysis systems’,J. Biomech.,35, pp. 537–542

    Article  Google Scholar 

  • Miyazaki, S. (1997): ‘Long-term unrestrained measurement of stride length and walking velocity utilizing a piezoelectric gyroscope’,IEEE Trans. Biomed. Eng.,44, pp. 753–759

    Article  Google Scholar 

  • Murata Manufacturing Co., Ltd. (1999): ‘Data sheet of Gyrostar® Model: ENC-03JA ENC-03JB’, http://www.murata.com

  • Ohtaki, Y., Sagawa, K., andInooka, H. (2001): ‘A method for gait analysis in a daily living environment by body-mounted instruments’,JSME Int. J.,44, pp. 1125–1132.

    Google Scholar 

  • Pappas, I. P. I., Keller, T., andPopovic, M. R. (1999): ‘Experimental evaluation of the gyroscope sensor used in anew gait phase detection system’,Proc. 4th Ann. Conf. Int. Functional Electrical Stimulation Society, August 23–27, Sendai, Japan, pp. 12–16

  • Pappas, I. P. I., Popovic, M. R., Keller, T., Dietz, V., andMorari, M. (2001): ‘A reliable gait phase detection system’,IEEE Trans. Rehab. Eng.,9, pp. 113–125

    Google Scholar 

  • Sabatini, A. M., Martelloni, C., Scapellato, S., andCavallo, F. (2004): ‘Assessment of walking features from foot inertial sensing’,IEEE Trans. Biomed. Eng., in press

  • Shoemake, K. (1985): ‘Animating rotations with quaternion curves’.Proc. SIGGRAPH 85, ACM Press, pp. 245–254

  • Veltink, P. H., Bussmann, H. B. J., De Vries, W., Martens, W. L. J., andVan Lummel, R. C. (1996): ‘Detection of static and dynamic activities using uniaxial accelerometers’,IEEE Trans. Rehab. Eng.,4, pp. 375–385

    Google Scholar 

  • Veltink, P. H., Slycke, P., Hemssems, J., Buschman, R., Bulstra, G., andHermens, H. (2003): ‘Three dimensional inertial sensing of foot movements for automatic tuning of a two-channel implantable drop-foot stimulator’,Med. Eng. Phys.,25, pp. 21–28

    Article  Google Scholar 

  • Verplaetse C. (1996): ‘Inertial proprioceptive devices: self-motion-sensing toys and tools’, IBM Systems Journal,35(3–4), pp. 639–650

    Google Scholar 

  • Williamson, R., andAndrews, B. J. (2001): ‘Detecting absolute human knee angle and angular velocity using accelerometers and gyroscopes’,Med. Biol. Eng. Comput.,39, pp. 294–302

    Article  Google Scholar 

  • Wu, G., andLadin, Z. (1996): ‘The study of kinematic transients in locomotion using the integrated kinematic sensor’,IEEE Trans. Rehab. Eng.,4, pp. 193–200

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Sabatini.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sabatini, A.M. Quaternion-based strap-down integration method for applications of inertial sensing to gait analysis. Med. Biol. Eng. Comput. 43, 94–101 (2005). https://doi.org/10.1007/BF02345128

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02345128

Keywords

Navigation