Random attractors | Journal of Dynamics and Differential Equations Skip to main content
Log in

Abstract

In this paper, we generalize the notion of an attractor for the stochastic dynamical system introduced in [7]. We prove that the stochastic attractor satisfies most of the properties satisfied by the usual attractor in the theory of deterministic dynamical systems. We also show that our results apply to the stochastic Navier-Stokes equation, the white noise-driven Burgers equation, and a nonlinear stochastic wave equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Bensoussan and R. Temam, Equations stochastiques du type Navier-Stokes.J. Funct. Anal. 13, 195–222, 1973.

    Article  Google Scholar 

  2. Z. Brzezniak, M. Capinski, and F. Flandoli, Pathwise global attractors for stationary random dynamical systems.Prob. Th. Rel. Fields 95, 87–102, 1993.

    Article  Google Scholar 

  3. R. Carmona and D. Nualart, Random non-linear wave equations: Smoothness of the solutions.Prob. Th. Rel. Fields 79, 469–508, 1988.

    Article  Google Scholar 

  4. C. Castaing and M. Valadier,Convex Analysis and Measurable Multifunctions, Lecture Notes in Mathematics 580, Springer-Verlag, Berlin, 1977.

    Google Scholar 

  5. D. H. Chambers, R. J. Adrian, P. Moin, D. S. Stewart, and H. J. Sung, Karhunen-Loeve expansion of Burger's model of turbulence.Phys. Fluids 31(9), 2573–2582, 1988.

    Article  Google Scholar 

  6. H. Choi, R. Temam, P. Moin, and J. Kim, Feedback control for unsteady flow and its application to Burgers equation.J. Fluid Mech. 253, 509–543, 1993.

    Google Scholar 

  7. H. Crauel and F. Flandoli, Attractors for random dynamical systems,Prob. Th. Rel. Fields 100, 365–393, 1994.

    Article  Google Scholar 

  8. H. Crauel and F. Flandoli, Hausdorff dimension of invariant sets for random dynamical systems,J. Dynamics Differential Equations, 1994.

  9. G. Da Prato and D. Gatarek, Stochastic Burgers equation with correlated noise, Preprint 4, Scuola Normale Superiore di Pisa, 1994.

  10. G. Da Prato and J. Zabczyk, Stochastic equations in infinite dimensions.Encyclopedia of Mathematics and its Applications, Cambridge University Press, Cambridge, 1992.

    Google Scholar 

  11. G. Da Prato, A. Debussche, and R. Temam, Stochastic Burger's equation.Nonlin. Diff. Eq. Appl. 1, 389–402, 1994.

    Article  Google Scholar 

  12. F. Flandoli, Dissipativity and invariant measures for stochastic Navier-Stokes equations.Nonlin. Diff. Eq. Appl. 1, 403–423, 1994.

    Article  Google Scholar 

  13. F. Flandoli and D. Gatarek, Martingale and stationary solutions for stochastic Navier-Stokes equations, Preprint 14, Scuola Normale Superiore di Pisa.Prob. Th. Rel. Fields 102(3), 367–391, 1995.

    Article  Google Scholar 

  14. F. Flandoli and B. Maslowski, Ergodicity of the 2-D Navier-Stokes equation under random perturbations, Preprint 20, Scuola Normale Superiore di Pisa.Comm. Math. Phys. 172(1), 119–141, 1995.

    Article  Google Scholar 

  15. J. K. Hale,Asymptotic Behaviour of Dissipative Dynamical Systems, Mathematical Surveys and Monographs, Vol. 25, AMS, Providence, 1988.

    Google Scholar 

  16. A. Haraux, Attractors of asymptotically compact processes and applications to nonlinear partial differential equations.Comm. PDE 13(11), 1383–1414, 1988.

    Google Scholar 

  17. A. Haraux,Systèmes Dynamiques Dissipatifs et Applications. Collection RMA 17, Masson, Paris, 1991.

    Google Scholar 

  18. I. Hosokawa and K. Yamamoto, Turbulence in the randomly forced one dimensional Burgers flow.J. Stat. Phys. 13, 245, 1975.

    Article  Google Scholar 

  19. H. Morimoto, Attractors of probability measures for semilinear stochastic evolution equations.Stoch. Anal. Appl. 10, 205–212, 1992.

    Google Scholar 

  20. B. Schmalfu\, Measure Attractors of the Stochastic Navier-Stokes equation, Report 258, Institut für Dynamische Systeme, Bremen, 1991.

    Google Scholar 

  21. R. Temam,Infinite Dimensional Dynamical Systems in Mechanics and Physics, Springer-Verlag, New York, 1988.

    Google Scholar 

  22. M. I. Vishik,Asymptotic Behaviour of Solutions of Evolutionary Equations, Cambridge University Press, Cambridge, 1992.

    Google Scholar 

  23. M. I. Vishik and A. V. Fursikov,Mathematical Problems of Statistical Hydromechanics, Kluver, Dordrecht, 1980.

    Google Scholar 

  24. H. F. Yashima,Equations de Navier-Stokes Stochastiques Non Homogenes et Applications, Tesi di perfezionamento, Scuola Normale Superiore, Pisa, 1992.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Crauel, H., Debussche, A. & Flandoli, F. Random attractors. J Dyn Diff Equat 9, 307–341 (1997). https://doi.org/10.1007/BF02219225

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02219225

Key words

AMS subject classifications

Navigation