Abstract
In this paper, we generalize the notion of an attractor for the stochastic dynamical system introduced in [7]. We prove that the stochastic attractor satisfies most of the properties satisfied by the usual attractor in the theory of deterministic dynamical systems. We also show that our results apply to the stochastic Navier-Stokes equation, the white noise-driven Burgers equation, and a nonlinear stochastic wave equation.
Similar content being viewed by others
References
A. Bensoussan and R. Temam, Equations stochastiques du type Navier-Stokes.J. Funct. Anal. 13, 195–222, 1973.
Z. Brzezniak, M. Capinski, and F. Flandoli, Pathwise global attractors for stationary random dynamical systems.Prob. Th. Rel. Fields 95, 87–102, 1993.
R. Carmona and D. Nualart, Random non-linear wave equations: Smoothness of the solutions.Prob. Th. Rel. Fields 79, 469–508, 1988.
C. Castaing and M. Valadier,Convex Analysis and Measurable Multifunctions, Lecture Notes in Mathematics 580, Springer-Verlag, Berlin, 1977.
D. H. Chambers, R. J. Adrian, P. Moin, D. S. Stewart, and H. J. Sung, Karhunen-Loeve expansion of Burger's model of turbulence.Phys. Fluids 31(9), 2573–2582, 1988.
H. Choi, R. Temam, P. Moin, and J. Kim, Feedback control for unsteady flow and its application to Burgers equation.J. Fluid Mech. 253, 509–543, 1993.
H. Crauel and F. Flandoli, Attractors for random dynamical systems,Prob. Th. Rel. Fields 100, 365–393, 1994.
H. Crauel and F. Flandoli, Hausdorff dimension of invariant sets for random dynamical systems,J. Dynamics Differential Equations, 1994.
G. Da Prato and D. Gatarek, Stochastic Burgers equation with correlated noise, Preprint 4, Scuola Normale Superiore di Pisa, 1994.
G. Da Prato and J. Zabczyk, Stochastic equations in infinite dimensions.Encyclopedia of Mathematics and its Applications, Cambridge University Press, Cambridge, 1992.
G. Da Prato, A. Debussche, and R. Temam, Stochastic Burger's equation.Nonlin. Diff. Eq. Appl. 1, 389–402, 1994.
F. Flandoli, Dissipativity and invariant measures for stochastic Navier-Stokes equations.Nonlin. Diff. Eq. Appl. 1, 403–423, 1994.
F. Flandoli and D. Gatarek, Martingale and stationary solutions for stochastic Navier-Stokes equations, Preprint 14, Scuola Normale Superiore di Pisa.Prob. Th. Rel. Fields 102(3), 367–391, 1995.
F. Flandoli and B. Maslowski, Ergodicity of the 2-D Navier-Stokes equation under random perturbations, Preprint 20, Scuola Normale Superiore di Pisa.Comm. Math. Phys. 172(1), 119–141, 1995.
J. K. Hale,Asymptotic Behaviour of Dissipative Dynamical Systems, Mathematical Surveys and Monographs, Vol. 25, AMS, Providence, 1988.
A. Haraux, Attractors of asymptotically compact processes and applications to nonlinear partial differential equations.Comm. PDE 13(11), 1383–1414, 1988.
A. Haraux,Systèmes Dynamiques Dissipatifs et Applications. Collection RMA 17, Masson, Paris, 1991.
I. Hosokawa and K. Yamamoto, Turbulence in the randomly forced one dimensional Burgers flow.J. Stat. Phys. 13, 245, 1975.
H. Morimoto, Attractors of probability measures for semilinear stochastic evolution equations.Stoch. Anal. Appl. 10, 205–212, 1992.
B. Schmalfu\, Measure Attractors of the Stochastic Navier-Stokes equation, Report 258, Institut für Dynamische Systeme, Bremen, 1991.
R. Temam,Infinite Dimensional Dynamical Systems in Mechanics and Physics, Springer-Verlag, New York, 1988.
M. I. Vishik,Asymptotic Behaviour of Solutions of Evolutionary Equations, Cambridge University Press, Cambridge, 1992.
M. I. Vishik and A. V. Fursikov,Mathematical Problems of Statistical Hydromechanics, Kluver, Dordrecht, 1980.
H. F. Yashima,Equations de Navier-Stokes Stochastiques Non Homogenes et Applications, Tesi di perfezionamento, Scuola Normale Superiore, Pisa, 1992.
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Crauel, H., Debussche, A. & Flandoli, F. Random attractors. J Dyn Diff Equat 9, 307–341 (1997). https://doi.org/10.1007/BF02219225
Received:
Issue Date:
DOI: https://doi.org/10.1007/BF02219225
Key words
- Random attractors
- stochastic dynamical systems
- deterministic nonautonomous systems
- stochastic Navier-Stokes equation
- stochastic Burgers equation
- stochastic nonlinear wave equation