これ実は ACL Practice Contest の K 問題と同じらしい
問題概要
長さ の数列 が与えられる。この数列に対して、次の 回のクエリに答えよ。
- クエリタイプ 1 ():数列の区間 内の各要素の値を 倍して を足せ
- クエリタイプ 2 ():数列の区間 内の要素の総和を 998244353 で割った余りを答えよ
制約
考えたこと
遅延評価セグメント木が使える。次の記事の問題と完全に一緒。
コード
#include <bits/stdc++.h> using namespace std; // Lazy Segment Tree template<class Monoid, class Action> struct LazySegmentTree { // various function types using FuncOperator = function<Monoid(Monoid, Monoid)>; using FuncMapping = function<Monoid(Action, Monoid)>; using FuncComposition = function<Action(Action, Action)>; // core member int N; FuncOperator OP; FuncMapping MAPPING; FuncComposition COMPOSITION; Monoid IDENTITY_MONOID; Action IDENTITY_ACTION; // inner data int log, offset; vector<Monoid> dat; vector<Action> lazy; // constructor LazySegmentTree() {} LazySegmentTree(int n, const FuncOperator op, const FuncMapping mapping, const FuncComposition composition, const Monoid &identity_monoid, const Action &identity_action) { init(n, op, mapping, composition, identity_monoid, identity_action); } LazySegmentTree(const vector<Monoid> &v, const FuncOperator op, const FuncMapping mapping, const FuncComposition composition, const Monoid &identity_monoid, const Action &identity_action) { init(v, op, mapping, composition, identity_monoid, identity_action); } void init(int n, const FuncOperator op, const FuncMapping mapping, const FuncComposition composition, const Monoid &identity_monoid, const Action &identity_action) { N = n, OP = op, MAPPING = mapping, COMPOSITION = composition; IDENTITY_MONOID = identity_monoid, IDENTITY_ACTION = identity_action; log = 0, offset = 1; while (offset < N) ++log, offset <<= 1; dat.assign(offset * 2, IDENTITY_MONOID); lazy.assign(offset * 2, IDENTITY_ACTION); } void init(const vector<Monoid> &v, const FuncOperator op, const FuncMapping mapping, const FuncComposition composition, const Monoid &identity_monoid, const Action &identity_action) { init((int)v.size(), op, mapping, composition, identity_monoid, identity_action); build(v); } void build(const vector<Monoid> &v) { assert(N == (int)v.size()); for (int i = 0; i < N; ++i) dat[i + offset] = v[i]; for (int k = offset - 1; k > 0; --k) pull_dat(k); } int size() const { return N; } // basic functions for lazy segment tree void pull_dat(int k) { dat[k] = OP(dat[k * 2], dat[k * 2 + 1]); } void apply_lazy(int k, const Action &f) { dat[k] = MAPPING(f, dat[k]); if (k < offset) lazy[k] = COMPOSITION(f, lazy[k]); } void push_lazy(int k) { apply_lazy(k * 2, lazy[k]); apply_lazy(k * 2 + 1, lazy[k]); lazy[k] = IDENTITY_ACTION; } void pull_dat_deep(int k) { for (int h = 1; h <= log; ++h) pull_dat(k >> h); } void push_lazy_deep(int k) { for (int h = log; h >= 1; --h) push_lazy(k >> h); } // setter and getter, update A[i], i is 0-indexed, O(log N) void set(int i, const Monoid &v) { assert(0 <= i && i < N); int k = i + offset; push_lazy_deep(k); dat[k] = v; pull_dat_deep(k); } Monoid get(int i) { assert(0 <= i && i < N); int k = i + offset; push_lazy_deep(k); return dat[k]; } Monoid operator [] (int i) { return get(i); } // apply f for index i void apply(int i, const Action &f) { assert(0 <= i && i < N); int k = i + offset; push_lazy_deep(k); dat[k] = MAPPING(f, dat[k]); pull_dat_deep(k); } // apply f for interval [l, r) void apply(int l, int r, const Action &f) { assert(0 <= l && l <= r && r <= N); if (l == r) return; l += offset, r += offset; for (int h = log; h >= 1; --h) { if (((l >> h) << h) != l) push_lazy(l >> h); if (((r >> h) << h) != r) push_lazy((r - 1) >> h); } int original_l = l, original_r = r; for (; l < r; l >>= 1, r >>= 1) { if (l & 1) apply_lazy(l++, f); if (r & 1) apply_lazy(--r, f); } l = original_l, r = original_r; for (int h = 1; h <= log; ++h) { if (((l >> h) << h) != l) pull_dat(l >> h); if (((r >> h) << h) != r) pull_dat((r - 1) >> h); } } // get prod of interval [l, r) Monoid prod(int l, int r) { assert(0 <= l && l <= r && r <= N); if (l == r) return IDENTITY_MONOID; l += offset, r += offset; for (int h = log; h >= 1; --h) { if (((l >> h) << h) != l) push_lazy(l >> h); if (((r >> h) << h) != r) push_lazy(r >> h); } Monoid val_left = IDENTITY_MONOID, val_right = IDENTITY_MONOID; for (; l < r; l >>= 1, r >>= 1) { if (l & 1) val_left = OP(val_left, dat[l++]); if (r & 1) val_right = OP(dat[--r], val_right); } return OP(val_left, val_right); } Monoid all_prod() { return dat[1]; } // get max r that f(get(l, r)) = True (0-indexed), O(log N) // f(IDENTITY) need to be True int max_right(const function<bool(Monoid)> f, int l = 0) { if (l == N) return N; l += offset; push_lazy_deep(l); Monoid sum = IDENTITY_MONOID; do { while (l % 2 == 0) l >>= 1; if (!f(OP(sum, dat[l]))) { while (l < offset) { push_lazy(l); l = l * 2; if (f(OP(sum, dat[l]))) { sum = OP(sum, dat[l]); ++l; } } return l - offset; } sum = OP(sum, dat[l]); ++l; } while ((l & -l) != l); // stop if l = 2^e return N; } // get min l that f(get(l, r)) = True (0-indexed), O(log N) // f(IDENTITY) need to be True int min_left(const function<bool(Monoid)> f, int r = -1) { if (r == 0) return 0; if (r == -1) r = N; r += offset; push_lazy_deep(r - 1); Monoid sum = IDENTITY_MONOID; do { --r; while (r > 1 && (r % 2)) r >>= 1; if (!f(OP(dat[r], sum))) { while (r < offset) { push_lazy(r); r = r * 2 + 1; if (f(OP(dat[r], sum))) { sum = OP(dat[r], sum); --r; } } return r + 1 - offset; } sum = OP(dat[r], sum); } while ((r & -r) != r); return 0; } // debug stream friend ostream& operator << (ostream &s, LazySegmentTree seg) { for (int i = 0; i < (int)seg.size(); ++i) { s << seg[i]; if (i != (int)seg.size() - 1) s << " "; } return s; } // dump void dump() { for (int i = 0; i <= log; ++i) { for (int j = (1 << i); j < (1 << (i + 1)); ++j) { cout << "{" << dat[j] << "," << lazy[j] << "} "; } cout << endl; } } }; // modint template<int MOD> struct Fp { // inner value long long val; // constructor constexpr Fp() : val(0) { } constexpr Fp(long long v) : val(v % MOD) { if (val < 0) val += MOD; } // getter constexpr long long get() const { return val; } constexpr int get_mod() const { return MOD; } // comparison operators constexpr bool operator == (const Fp &r) const { return this->val == r.val; } constexpr bool operator != (const Fp &r) const { return this->val != r.val; } // arithmetic operators constexpr Fp& operator += (const Fp &r) { val += r.val; if (val >= MOD) val -= MOD; return *this; } constexpr Fp& operator -= (const Fp &r) { val -= r.val; if (val < 0) val += MOD; return *this; } constexpr Fp& operator *= (const Fp &r) { val = val * r.val % MOD; return *this; } constexpr Fp& operator /= (const Fp &r) { long long a = r.val, b = MOD, u = 1, v = 0; while (b) { long long t = a / b; a -= t * b, swap(a, b); u -= t * v, swap(u, v); } val = val * u % MOD; if (val < 0) val += MOD; return *this; } constexpr Fp operator + () const { return Fp(*this); } constexpr Fp operator - () const { return Fp(0) - Fp(*this); } constexpr Fp operator + (const Fp &r) const { return Fp(*this) += r; } constexpr Fp operator - (const Fp &r) const { return Fp(*this) -= r; } constexpr Fp operator * (const Fp &r) const { return Fp(*this) *= r; } constexpr Fp operator / (const Fp &r) const { return Fp(*this) /= r; } // other operators constexpr Fp& operator ++ () { ++val; if (val >= MOD) val -= MOD; return *this; } constexpr Fp& operator -- () { if (val == 0) val += MOD; --val; return *this; } constexpr Fp operator ++ (int) { Fp res = *this; ++*this; return res; } constexpr Fp operator -- (int) { Fp res = *this; --*this; return res; } friend constexpr istream& operator >> (istream &is, Fp<MOD> &x) { is >> x.val; x.val %= MOD; if (x.val < 0) x.val += MOD; return is; } friend constexpr ostream& operator << (ostream &os, const Fp<MOD> &x) { return os << x.val; } // other functions constexpr Fp pow(long long n) const { Fp res(1), mul(*this); while (n > 0) { if (n & 1) res *= mul; mul *= mul; n >>= 1; } return res; } constexpr Fp inv() const { Fp res(1), div(*this); return res / div; } friend constexpr Fp<MOD> pow(const Fp<MOD> &r, long long n) { return r.pow(n); } friend constexpr Fp<MOD> inv(const Fp<MOD> &r) { return r.inv(); } }; /* セグメント木のための構造体と、作用を表す構造体と、それらの単位元 */ using mint = Fp<998244353>; struct Act { mint b, c; Act(mint b = 0, mint c = 0) : b(b), c(c) {} }; struct Node { mint val; long long siz; Node(mint v = 0, long long s = 0) : val(v), siz(s) {} }; const Node identity_monoid = Node(0, 0); const Act identity_action = Act(1, 0); // 二項演算 auto op = [](Node x, Node y) -> Node { return Node(x.val + y.val, x.siz + y.siz); }; // 作用関数 auto mapping = [](Act f, Node x) -> Node { return Node(f.b * x.val + f.c * x.siz, x.siz); }; // 作用の合成関数:g.b((f.b)x + f.c) + g.c = (g.b f.b)x + g.b f.c + g.c auto composition = [](Act g, Act f) -> Act { return Act(g.b * f.b, g.b * f.c + g.c); }; int main() { // 入力 int N, Q; cin >> N >> Q; vector<Node> a(N); for (int i = 0; i < N; ++i) { int x; cin >> x; a[i] = Node(x, 1); } // 遅延評価セグメント木のセットアップ LazySegmentTree<Node, Act> seg(a, op, mapping, composition, identity_monoid, identity_action); // クエリ処理 while (Q--) { int t; cin >> t; if (t == 0) { int l, r, c, d; cin >> l >> r >> c >> d; seg.apply(l, r, Act(c, d)); } else { int l, r; cin >> l >> r; Node res = seg.prod(l, r); cout << res.val << endl; } } }