DMGT

DMGT

ISSN 1234-3099 (print version)

ISSN 2083-5892 (electronic version)

https://doi.org/10.7151/dmgt

Discussiones Mathematicae Graph Theory

Journal Impact Factor (JIF 2023): 0.5

5-year Journal Impact Factor (2023): 0.6

CiteScore (2023): 2.2

SNIP (2023): 0.681

Discussiones Mathematicae Graph Theory

Article in volume


Authors:

V. Rödl

Vojtěch Rödl

Emory University, Atlanta

email: rodl@mathcs.emory.edu

A. Ruciński

Andrzej Ruciński

A. Mickiewicz University, POznań

email: rucinski@amu.edu.pl

0000-0002-0742-7694

Title:

Covering the edges of a random hypergraph by cliques

PDF

Source:

Discussiones Mathematicae Graph Theory 42(4) (2022) 1333-1349

Received: 2021-03-24 , Revised: 2021-09-06 , Accepted: 2021-09-06 , Available online: 2021-09-17 , https://doi.org/10.7151/dmgt.2431

Abstract:

We determine the order of magnitude of the minimum clique cover of the edges of a binomial, $r$-uniform, random hypergraph $G^{(r)}(n,p)$, $p$ fixed. In doing so, we combine the ideas from the proofs of the graph case ($r=2$) in Frieze and Reed [Covering the edges of a random graph by cliques, Combinatorica 15 (1995) 489–497] and Guo, Patten, Warnke [Prague dimension of random graphs, manuscript submitted for publication].

Keywords:

$r$-uniform random hypergraph, clique covering

References:

  1. N. Alon, J.-H. Kim and J. Spencer, Nearly perfect matchings in regular simple hypergraphs, Israel J. Math. 100 (1997) 171–187.
    https://doi.org/10.1007/BF02773639
  2. B. Bollobás, P. Erdős, J. Spencer and D.B. West, Clique coverings of the edges of a random graph, Combinatorica 13 (1993) 1–5.
    https://doi.org/10.1007/BF01202786
  3. A. Frieze and B. Reed, Covering the edges of a random graph by cliques, Combinatorica 15 (1995) 489–497 (see arXiv:1103.4870v1 for corrected version).
    https://doi.org/10.1007/BF01192522
  4. H. Guo, K. Patten and L. Warnke, Prague dimension of random graphs, manuscript submitted for publication.
  5. S. Janson, T. Łuczak and A. Ruciński, Random Graphs (Wiley, 2000).
    https://doi.org/10.1002/9781118032718
  6. J. Lehel, Covers in hypergraphs, Combinatorica 2 (1982) 305–309.
    https://doi.org/10.1007/BF02579237
  7. C. McDiarmid, Concentration, in: Probabilistic Methods for Algorithmic Discrete Mathematics, (Springer, Berlin 1998) 195–248.
    https://doi.org/10.1007/978-3-662-12788-9_6
  8. L. Warnke, On the method of typical bounded differences, Combin. Probab. Comput. 25 (2016) 269–299.
    https://doi.org/10.1017/S0963548315000103

Close