Discussiones Mathematicae Graph Theory 16(2) (1996)
123-141
DOI: https://doi.org/10.7151/dmgt.1028
UNAVOIDABLE SET OF FACE TYPES FOR PLANAR MAPS
Mirko Horňák and Stanislav Jendrol
Department of Geometry and Algebra, P. J. Šafárik
University
Jesenná 5, 041 54 Košice, Slovakia
e-mail: hornak@turing.upjs.sk, jendrol@Košice.upjs.sk
Abstract
The type of a face f of a planar map is a sequence of degrees of vertices of f as they are encountered when traversing the boundary of f. A set 𝒯 of face types is found such that in any normal planar map there is a face with type from 𝒯. The set 𝒯 has four infinite series of types as, in a certain sense, the minimum possible number. An analogous result is applied to obtain new upper bounds for the cyclic chromatic number of 3-connected planar maps.
Keywords: normal planar map, plane graph, type of a face, unavoidable set, cyclic chromatic number.
1991 Mathematics Subject Classification: Primary 05C75, Secondary 05C10.
References
[1] | O.V. Borodin, On the total coloring of planar graphs, J. reine angew. Math. 394 (1989) 180-185, doi: 10.1515/crll.1989.394.180. |
[2] | O.V. Borodin, Precise lower bound for the number of edges of minor weight in planar maps, Math. Slovaca 42 (1992) 129-142. |
[3] | O.V. Borodin, A structural theorem on planar maps and its application to coloring, Diskret. Mat. 4 (1992) 60-65. (Russian) |
[4] | O.V. Borodin, Structural properties of planar maps with the minimal degree 5, Math. Nachr. 158 (1992) 109-117, doi: 10.1002/mana.19921580108. |
[5] | O.V. Borodin, Joint extension of two theorems of Kotzig on 3-polytopes, Combinatorica 13 (1993) 121-125, doi: 10.1007/BF01202794. |
[6] | O.V. Borodin, The structure of edge neighbourhoods in plane graphs and the simultaneous coloring of vertices, edges and faces, Mat. Zametki 53 (1993) 35-47. (Russian) |
[7] | O.V. Borodin, Simultaneous coloring of edges and faces of plane graphs, Discrete Math. 128 (1994) 21-33, doi: 10.1016/0012-365X(94)90101-5. |
[8] | O.V. Borodin, Triangles with restricted degree sum of their boundary vertices in plane graphs, Discrete Math. 137 (1995) 45-51, doi: 10.1016/0012-365X(94)E0144-7. |
[9] | O.V. Borodin and D. P. Sanders, On light edges and triangles in planar graphs of minimum degree five, Math. Nachr. 170 (1994) 19-24, doi: 10.1002/mana.19941700103. |
[10] | B. Grünbaum, Acyclic coloring of planar graphs, Israel J. Math. 14 (1973) 390-408, doi: 10.1007/BF02764716. |
[11] | B. Grünbaum, New views on some old questions of combinatorial geometry, in.: Proc. Internat. Colloq. Combin. Theory (Rome, 1973) Accad. Naz. Lincei Rome (1976) 451-468. |
[12] | B. Grünbaum and G.C. Shephard, Analogues for tilings of Kotzig's theorem on minimal weights of edges, Ann. Discrete Math. 12 (1982) 129-140. |
[13] | J. Ivančo, The weight of a graph, Ann. Discrete Math. 51 (1992) 113-116, doi: 10.1016/S0167-5060(08)70614-9. |
[14] | S. Jendrol' and Z. Skupień, On the vertex/edge distance colourings of planar graphs, submitted. |
[15] | T.R. Jensen and B. Toft, Graph Coloring Problems (John Wiley&Sons, Inc. New York, 1995). |
[16] | A. Kotzig, Contribution to the theory of Eulerian polyhedra, Mat.-Fyz. Casopis Sloven. Akad. Vied 5 (1955) 101-103. (Slovak) |
[17] | A. Kotzig, On the theory of Euler polyhedra, Mat.-Fyz. Casopis Sloven. Akad. Vied 13 (1963) 20-31. (Russian) |
[18] | A. Kotzig, Extremal polyhedral graphs, Ann. New York Acad. Sci. 319 (1979) 569-570. |
[19] | H. Lebesgue, Quelques conséquences simples de la formule d'Euler, J. Math. Pures Appl. 19 (1940) 19-43. |
[20] | O. Ore and M.D. Plummer, Cyclic coloration of plane graphs, in: Recent Progress in Combinatorics (Proceedings of the Third Waterloo Conference on Combinatorics), Academic Press, New York (1969) 287-293. |
[21] | M.D. Plummer and B. Toft, Cyclic coloration of 3-polytopes, J. Graph Theory 11 (1987) 507-515, doi: 10.1002/jgt.3190110407. |
[22] | P. Wernicke, Über den kartographischen Vierfarbensatz, Math. Ann. 58 (1904) 413-426, doi: 10.1007/BF01444968. |
[23] | J. Zaks, Extending Kotzig's theorem, Israel J. Math. 45 (1983) 281-296, doi: 10.1007/BF02804013. |
Close