Multiclass patent document classification | Anne | Artificial Intelligence Research

Multiclass patent document classification

Chaitanya Anne, Avdesh Mishra, Md Tamjidul Hoque, Shengru Tu

Abstract


Text classification is used in information extraction and retrieval from a given text, and text classification has been considered as an important step to manage a vast number of records given in digital form that is far-reaching and expanding. This article addresses patent document classification problem into fifteen different categories or classes, where some classes overlap with each other for practical reasons. For the development of the classification model using machine learning techniques, useful features have been extracted from the given documents. The features are used to classify patent document as well as to generate useful tag-words. The overall objective of this work is to systematize NASA’s patent management, by developing a set of automated tools that can assist NASA to manage and market its portfolio of intellectual properties (IP), and to enable easier discovery of relevant IP by users. We have identified an array of methods that can be applied such as k-Nearest Neighbors (kNN), two variations of the Support Vector Machine (SVM) algorithms, and two tree based classification algorithms: Random Forest and J48. The major research steps in this paper consist of filtering techniques for variable selection, information gain and feature correlation analysis, and training and testing potential models using effective classifiers. Further, the obstacles associated with the imbalanced data were mitigated by adding pseudo-synthetic data wherever appropriate, which resulted in a superior SVM classifier based model.


Full Text:

PDF


DOI: https://doi.org/10.5430/air.v7n1p1

Refbacks

  • There are currently no refbacks.


Artificial Intelligence Research

ISSN 1927-6974 (Print)   ISSN 1927-6982 (Online)

Copyright © Sciedu Press 
To make sure that you can receive messages from us, please add the 'Sciedupress.com' domain to your e-mail 'safe list'. If you do not receive e-mail in your 'inbox', check your 'bulk mail' or 'junk mail' folders.