SciTePress - Publication Details
loading
Papers Papers/2022 Papers Papers/2022

Research.Publish.Connect.

Paper

Authors: Annamaria Demarinis Loiotile 1 ; 2 ; Francesco De Nicolò 1 ; 2 ; Alfonso Monaco 1 ; Sabina Tangaro 3 ; Shiva Loccisano 4 ; Giuseppe Conti 5 ; Adriana Agrimi 6 ; Nicola Amoroso 7 and Roberto Bellotti 1

Affiliations: 1 Dipartimento Interateneo di Fisica, Università degli Studi di Bari Aldo Moro, Bari, Italy ; 2 Dipartimento di Ingegneria Elettrica e dell’Informazione, Politecnico di Bari, Bari, Italy ; 3 Dipartimento di Scienze del Suolo, della Pianta e degli Alimenti, Università degli Studi di Bari Aldo Moro, Bari, Italy ; 4 Behold srl, Bologna, Italy ; 5 Netval – Network per la Valorizzazione della Ricerca Universitaria, Lecco, Italy ; 6 Direzione Ricerca, Terza Missione e Internazionalizzazione, Università degli Studi di Bari Aldo Moro, Bari, Italy ; 7 Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari Aldo Moro, Bari, Italy

Keyword(s): Natural Language Processing, Italian Patents, Intellectual Property Analytics, Clustering, Technology Transfer, Knowledge Database, Healthcare 4.0.

Abstract: A great mine of innovation is represented by the excellence of the scientific know-how of the Italian universities and research centers. But very often university patents remain unvalued and unexploited, in the so-called “Valley of death”. In the framework of Intellectual Property Analytics and Patent Informatics, this paper analyses the Italian patent database “Knowledge Share” and its proposed classifications (10 technological areas). By means of Natural Language Processing (NLP) techniques, we examined 1694 patents from 89 Italian Research Institutions and a cluster analysis revealed the existence of 8 homogeneous clusters instead of the 10 proposed by the platform. Thus, our findings suggest the presence of possible inhomogeneities within the traditional classifications, probably due to the emergence of novel technologies or cross-domain areas, e.g., Healthcare 4.0; moreover, these clusters could lead to better performance in terms of offer/demand matching for the platform users.

CC BY-NC-ND 4.0

Sign In Guest: Register as new SciTePress user now for free.

Sign In SciTePress user: please login.

PDF ImageMy Papers

You are not signed in, therefore limits apply to your IP address 8.209.245.224

In the current month:
Recent papers: 100 available of 100 total
2+ years older papers: 200 available of 200 total

Paper citation in several formats:
Demarinis Loiotile, A. ; De Nicolò, F. ; Monaco, A. ; Tangaro, S. ; Loccisano, S. ; Conti, G. ; Agrimi, A. ; Amoroso, N. and Bellotti, R. (2023). Innovations and Emerging Technologies: A Study of the Italian Intellectual Property Knowledge Database. In Proceedings of the 15th International Conference on Agents and Artificial Intelligence - Volume 2: ICAART; ISBN 978-989-758-623-1; ISSN 2184-433X, SciTePress, pages 75-86. DOI: 10.5220/0011627000003393

@conference{icaart23,
author={Annamaria {Demarinis Loiotile} and Francesco {De Nicolò} and Alfonso Monaco and Sabina Tangaro and Shiva Loccisano and Giuseppe Conti and Adriana Agrimi and Nicola Amoroso and Roberto Bellotti},
title={Innovations and Emerging Technologies: A Study of the Italian Intellectual Property Knowledge Database},
booktitle={Proceedings of the 15th International Conference on Agents and Artificial Intelligence - Volume 2: ICAART},
year={2023},
pages={75-86},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0011627000003393},
isbn={978-989-758-623-1},
issn={2184-433X},
}

TY - CONF

JO - Proceedings of the 15th International Conference on Agents and Artificial Intelligence - Volume 2: ICAART
TI - Innovations and Emerging Technologies: A Study of the Italian Intellectual Property Knowledge Database
SN - 978-989-758-623-1
IS - 2184-433X
AU - Demarinis Loiotile, A.
AU - De Nicolò, F.
AU - Monaco, A.
AU - Tangaro, S.
AU - Loccisano, S.
AU - Conti, G.
AU - Agrimi, A.
AU - Amoroso, N.
AU - Bellotti, R.
PY - 2023
SP - 75
EP - 86
DO - 10.5220/0011627000003393
PB - SciTePress