Computer Science > Machine Learning
[Submitted on 12 Nov 2024]
Title:Overcoming the Curse of Dimensionality in Reinforcement Learning Through Approximate Factorization
View PDF HTML (experimental)Abstract:Reinforcement Learning (RL) algorithms are known to suffer from the curse of dimensionality, which refers to the fact that large-scale problems often lead to exponentially high sample complexity. A common solution is to use deep neural networks for function approximation; however, such approaches typically lack theoretical guarantees. To provably address the curse of dimensionality, we observe that many real-world problems exhibit task-specific model structures that, when properly leveraged, can improve the sample efficiency of RL. Building on this insight, we propose overcoming the curse of dimensionality by approximately factorizing the original Markov decision processes (MDPs) into smaller, independently evolving MDPs. This factorization enables the development of sample-efficient RL algorithms in both model-based and model-free settings, with the latter involving a variant of variance-reduced Q-learning. We provide improved sample complexity guarantees for both proposed algorithms. Notably, by leveraging model structure through the approximate factorization of the MDP, the dependence of sample complexity on the size of the state-action space can be exponentially reduced. Numerically, we demonstrate the practicality of our proposed methods through experiments on both synthetic MDP tasks and a wind farm-equipped storage control problem.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.