Computer Science > Distributed, Parallel, and Cluster Computing
[Submitted on 11 Nov 2024 (v1), last revised 18 Dec 2024 (this version, v2)]
Title:DynaShard: Secure and Adaptive Blockchain Sharding Protocol with Hybrid Consensus and Dynamic Shard Management
View PDF HTML (experimental)Abstract:Blockchain sharding has emerged as a promising solution to the scalability challenges in traditional blockchain systems by partitioning the network into smaller, manageable subsets called shards. Despite its potential, existing sharding solutions face significant limitations in handling dynamic workloads, ensuring secure cross-shard transactions, and maintaining system integrity. To address these gaps, we propose DynaShard, a dynamic and secure cross-shard transaction processing mechanism designed to enhance blockchain sharding efficiency and security. DynaShard combines adaptive shard management, a hybrid consensus approach, plus an efficient state synchronization and dispute resolution protocol. Our performance evaluation, conducted using a robust experimental setup with real-world network conditions and transaction workloads, demonstrates DynaShard's superior throughput, reduced latency, and improved shard utilization compared to the FTBS method. Specifically, DynaShard achieves up to a 42.6% reduction in latency and a 78.77% improvement in shard utilization under high transaction volumes and varying cross-shard transaction ratios. These results highlight DynaShard's ability to outperform state-of-the-art sharding methods, ensuring scalable and resilient blockchain systems. We believe that DynaShard's innovative approach will significantly impact future developments in blockchain technology, paving the way for more efficient and secure distributed systems.
Submission history
From: Cong Wu [view email][v1] Mon, 11 Nov 2024 11:52:23 UTC (1,137 KB)
[v2] Wed, 18 Dec 2024 17:40:59 UTC (1,134 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.