Computer Science > Performance
[Submitted on 5 Nov 2024]
Title:DeepContext: A Context-aware, Cross-platform, and Cross-framework Tool for Performance Profiling and Analysis of Deep Learning Workloads
View PDF HTML (experimental)Abstract:Effective performance profiling and analysis are essential for optimizing training and inference of deep learning models, especially given the growing complexity of heterogeneous computing environments. However, existing tools often lack the capability to provide comprehensive program context information and performance optimization insights for sophisticated interactions between CPUs and GPUs. This paper introduces DeepContext, a novel profiler that links program contexts across high-level Python code, deep learning frameworks, underlying libraries written in C/C++, as well as device code executed on GPUs. DeepContext incorporates measurements of both coarse- and fine-grained performance metrics for major deep learning frameworks, such as PyTorch and JAX, and is compatible with GPUs from both Nvidia and AMD, as well as various CPU architectures, including x86 and ARM. In addition, DeepContext integrates a novel GUI that allows users to quickly identify hotpots and an innovative automated performance analyzer that suggests users with potential optimizations based on performance metrics and program context. Through detailed use cases, we demonstrate how DeepContext can help users identify and analyze performance issues to enable quick and effective optimization of deep learning workloads. We believe Deep Context is a valuable tool for users seeking to optimize complex deep learning workflows across multiple compute environments.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.