Computer Science > Machine Learning
[Submitted on 1 Nov 2024 (v1), last revised 15 Nov 2024 (this version, v2)]
Title:A Multi-Granularity Supervised Contrastive Framework for Remaining Useful Life Prediction of Aero-engines
View PDF HTML (experimental)Abstract:Accurate remaining useful life (RUL) predictions are critical to the safe operation of aero-engines. Currently, the RUL prediction task is mainly a regression paradigm with only mean square error as the loss function and lacks research on feature space structure, the latter of which has shown excellent performance in a large number of studies. This paper develops a multi-granularity supervised contrastive (MGSC) framework from plain intuition that samples with the same RUL label should be aligned in the feature space, and address the problems of too large minibatch size and unbalanced samples in the implementation. The RUL prediction with MGSC is implemented on using the proposed multi-phase training strategy. This paper also demonstrates a simple and scalable basic network structure and validates the proposed MGSC strategy on the CMPASS dataset using a convolutional long short-term memory network as a baseline, which effectively improves the accuracy of RUL prediction.
Submission history
From: Zixuan He [view email][v1] Fri, 1 Nov 2024 09:18:38 UTC (2,421 KB)
[v2] Fri, 15 Nov 2024 03:01:59 UTC (2,421 KB)
Current browse context:
cs.LG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.