Electrical Engineering and Systems Science > Systems and Control
[Submitted on 27 Oct 2024]
Title:Optimal Hardening Strategy for Electricity-Hydrogen Networks with Hydrogen Leakage Risk Control against Extreme Weather
View PDF HTML (experimental)Abstract:Defense hardening can effectively enhance the resilience of distribution networks against extreme weather disasters. Currently, most existing hardening strategies focus on reducing load shedding. However, for electricity-hydrogen distribution networks (EHDNs), the leakage risk of hydrogen should be controlled to avoid severe incidents such as explosions. To this end, this paper proposes an optimal hardening strategy for EHDNs under extreme weather, aiming to minimize load shedding while limiting the leakage risk of hydrogen pipelines. Specifically, modified failure uncertainty models for power lines and hydrogen pipelines are developed. These models characterize not only the effect of hardening, referred to as decision-dependent uncertainties (DDUs), but also the influence of disaster intensity correlations on failure probability distributions. Subsequently, a hardening decision framework is established, based on the two-stage distributionally robust optimization incorporating a hydrogen leakage chance constraint (HLCC). To enhance the computational efficiency of HLCC under discrete DDUs, an efficient second-order-cone transformation is introduced. Moreover, to address the intractable inverse of the second-order moment under DDUs, lifted variables are adopted to refine the main-cross moments. These reformulate the hardening problem as a two-stage mixed-integer second-order-cone programming, and finally solved by the column-and-constraint generation algorithm. Case studies demonstrate the effectiveness and superiority of the proposed method.
Current browse context:
eess.SY
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.