Computer Science > Machine Learning
[Submitted on 25 Oct 2024]
Title:Neuromorphic IoT Architecture for Efficient Water Management: A Smart Village Case Study
View PDFAbstract:The exponential growth of IoT networks necessitates a paradigm shift towards architectures that offer high flexibility and learning capabilities while maintaining low energy consumption, minimal communication overhead, and low latency. Traditional IoT systems, particularly when integrated with machine learning approaches, often suffer from high communication overhead and significant energy consumption. This work addresses these challenges by proposing a neuromorphic architecture inspired by biological systems. To illustrate the practical application of our proposed architecture, we present a case study focusing on water management in the Carinthian community of Neuhaus. Preliminary results regarding water consumption prediction and anomaly detection in this community are presented. We also introduce a novel neuromorphic IoT architecture that integrates biological principles into the design of IoT systems. This architecture is specifically tailored for edge computing scenarios, where low power and high efficiency are crucial. Our approach leverages the inherent advantages of neuromorphic computing, such as asynchronous processing and event-driven communication, to create an IoT framework that is both energy-efficient and responsive. This case study demonstrates how the neuromorphic IoT architecture can be deployed in a real-world scenario, highlighting its benefits in terms of energy savings, reduced communication overhead, and improved system responsiveness.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.