Mathematics > Numerical Analysis
[Submitted on 25 Oct 2024 (v1), last revised 8 Dec 2024 (this version, v2)]
Title:Ensemble Data Assimilation for Particle-based Methods
View PDF HTML (experimental)Abstract:This study presents a novel approach to applying data assimilation techniques for particle-based simulations using the Ensemble Kalman Filter. While data assimilation methods have been effectively applied to Eulerian simulations, their application in Lagrangian solution discretizations has not been properly explored. We introduce two specific methodologies to address this gap. The first methodology employs an intermediary Eulerian transformation that combines a projection with a remeshing process. The second is a purely Lagrangian scheme designed for situations where remeshing is not appropriate. The second is a purely Lagrangian scheme that is applicable when remeshing is not adapted. These methods are evaluated using a one-dimensional advection-diffusion model with periodic boundaries. Performance benchmarks for the one-dimensional scenario are conducted against a grid-based assimilation filter Subsequently, assimilation schemes are applied to a non-linear two-dimensional incompressible flow problem, solved via the Vortex-In-Cell method. The results demonstrate the feasibility of applying these methods in more complex scenarios, highlighting their effectiveness in both the one-dimensional and two-dimensional contexts.
Submission history
From: Marius Duvillard [view email][v1] Fri, 25 Oct 2024 12:48:47 UTC (4,830 KB)
[v2] Sun, 8 Dec 2024 20:38:33 UTC (5,691 KB)
Current browse context:
math.NA
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.