Electrical Engineering and Systems Science > Systems and Control
[Submitted on 23 Oct 2024]
Title:Fiber Activation by Bipolar Stimulation in Deep Brain Stimulation: A Patient Case Study
View PDF HTML (experimental)Abstract:Deep Brain Stimulation (DBS) is a therapy widely used for treating the symptoms of neurological disorders. Electrical pulses are chronically delivered in DBS to a disease-specific brain target via a surgically implanted electrode. The stimulating contact configuration, stimulation polarity, as well as amplitude, frequency, and pulse width of the DBS pulse sequence are utilized to optimize the therapeutic effect. In this paper, the utility of therapy individualization by means of patient-specific mathematical modeling is investigated with respect to a specific case of a patient diagnosed with Essential Tremor (ET). Two computational models are compared in their ability to elucidate the impact of DBS stimulation on the dentato-rubrothalamic tract: (i) a conventional model of Volume of Tissue Activated (VTA) and (ii) a well-established neural fiber activation modeling framework known as OSS-DBS. The simulation results are compared with tremor measured in the patient under different DBS settings using a smartphone application. The findings of the study highlight that temporally static VTA models do not adequately describe the differences in the outcomes of bipolar stimulation settings with switched polarity, whereas neural fiber activation models hold potential in this regard. However, it is noted that neither of the investigated models fully accounts for the measured symptom pattern, particularly regarding a bilateral effect produced by unilateral stimulation.
Submission history
From: Anna Franziska Frigge [view email][v1] Wed, 23 Oct 2024 11:31:43 UTC (2,996 KB)
Current browse context:
eess.SY
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.