Computer Science > Cryptography and Security
[Submitted on 22 Oct 2024 (v1), last revised 2 Feb 2025 (this version, v2)]
Title:On the Vulnerability of Text Sanitization
View PDF HTML (experimental)Abstract:Text sanitization, which employs differential privacy to replace sensitive tokens with new ones, represents a significant technique for privacy protection. Typically, its performance in preserving privacy is evaluated by measuring the attack success rate (ASR) of reconstruction attacks, where attackers attempt to recover the original tokens from the sanitized ones. However, current reconstruction attacks on text sanitization are developed empirically, making it challenging to accurately assess the effectiveness of sanitization. In this paper, we aim to provide a more accurate evaluation of sanitization effectiveness. Inspired by the works of Palamidessi et al., we implement theoretically optimal reconstruction attacks targeting text sanitization. We derive their bounds on ASR as benchmarks for evaluating sanitization performance. For real-world applications, we propose two practical reconstruction attacks based on these theoretical findings. Our experimental results underscore the necessity of reassessing these overlooked risks. Notably, one of our attacks achieves a 46.4% improvement in ASR over the state-of-the-art baseline, with a privacy budget of epsilon=4.0 on the SST-2 dataset. Our code is available at: this https URL.
Submission history
From: Meng Tong [view email][v1] Tue, 22 Oct 2024 14:31:53 UTC (1,680 KB)
[v2] Sun, 2 Feb 2025 08:12:19 UTC (1,760 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.