Computer Science > Databases
[Submitted on 21 Oct 2024]
Title:The Cost of Representation by Subset Repairs
View PDF HTML (experimental)Abstract:Datasets may include errors, and specifically violations of integrity constraints, for various reasons. Standard techniques for ``minimal-cost'' database repairing resolve these violations by aiming for minimum change in the data, and in the process, may sway representations of different sub-populations. For instance, the repair may end up deleting more females than males, or more tuples from a certain age group or race, due to varying levels of inconsistency in different sub-populations. Such repaired data can mislead consumers when used for analytics, and can lead to biased decisions for downstream machine learning tasks. We study the ``cost of representation'' in subset repairs for functional dependencies. In simple terms, we target the question of how many additional tuples have to be deleted if we want to satisfy not only the integrity constraints but also representation constraints for given sub-populations. We study the complexity of this problem and compare it with the complexity of optimal subset repairs without representations. While the problem is NP-hard in general, we give polynomial-time algorithms for special cases, and efficient heuristics for general cases. We perform a suite of experiments that show the effectiveness of our algorithms in computing or approximating the cost of representation.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.