Computer Science > Machine Learning
[Submitted on 20 Oct 2024 (v1), last revised 22 Oct 2024 (this version, v2)]
Title:A Bayesian Framework for Clustered Federated Learning
View PDF HTML (experimental)Abstract:One of the main challenges of federated learning (FL) is handling non-independent and identically distributed (non-IID) client data, which may occur in practice due to unbalanced datasets and use of different data sources across clients. Knowledge sharing and model personalization are key strategies for addressing this issue. Clustered federated learning is a class of FL methods that groups clients that observe similarly distributed data into clusters, such that every client is typically associated with one data distribution and participates in training a model for that distribution along their cluster peers. In this paper, we present a unified Bayesian framework for clustered FL which associates clients to clusters. Then we propose several practical algorithms to handle the, otherwise growing, data associations in a way that trades off performance and computational complexity. This work provides insights on client-cluster associations and enables client knowledge sharing in new ways. The proposed framework circumvents the need for unique client-cluster associations, which is seen to increase the performance of the resulting models in a variety of experiments.
Submission history
From: Peng Wu [view email][v1] Sun, 20 Oct 2024 19:11:24 UTC (8,635 KB)
[v2] Tue, 22 Oct 2024 16:57:37 UTC (8,635 KB)
Current browse context:
cs.LG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.