Computer Science > Computation and Language
[Submitted on 16 Oct 2024]
Title:A Claim Decomposition Benchmark for Long-form Answer Verification
View PDFAbstract:The advancement of LLMs has significantly boosted the performance of complex long-form question answering tasks. However, one prominent issue of LLMs is the generated "hallucination" responses that are not factual. Consequently, attribution for each claim in responses becomes a common solution to improve the factuality and verifiability. Existing researches mainly focus on how to provide accurate citations for the response, which largely overlook the importance of identifying the claims or statements for each response. To bridge this gap, we introduce a new claim decomposition benchmark, which requires building system that can identify atomic and checkworthy claims for LLM responses. Specifically, we present the Chinese Atomic Claim Decomposition Dataset (CACDD), which builds on the WebCPM dataset with additional expert annotations to ensure high data quality. The CACDD encompasses a collection of 500 human-annotated question-answer pairs, including a total of 4956 atomic claims. We further propose a new pipeline for human annotation and describe the challenges of this task. In addition, we provide experiment results on zero-shot, few-shot and fine-tuned LLMs as baselines. The results show that the claim decomposition is highly challenging and requires further explorations. All code and data are publicly available at \url{this https URL}.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.