Quantum Physics
[Submitted on 13 Oct 2024 (v1), last revised 3 Nov 2024 (this version, v2)]
Title:Simulation of fidelity in entanglement-based networks with repeater chains
View PDF HTML (experimental)Abstract:We implement a simulation environment on top of NetSquid that is specifically designed for estimating the end-to-end fidelity across a path of quantum repeaters or quantum switches. The switch model includes several generalizations which are not currently available in other tools, and are useful for gaining insight into practical and realistic quantum network engineering problems: an arbitrary number of memory registers at the switches, simplicity in including entanglement distillation mechanisms, arbitrary switching topologies, and more accurate models for the depolarization noise. An illustrative case study is presented, namely a comparison in terms of performance between a repeater chain where repeaters can only swap sequentially, and a single switch equipped with multiple memory registers, able to handle multiple swapping requests.
Submission history
From: Ana Fernández Vilas [view email][v1] Sun, 13 Oct 2024 08:49:05 UTC (542 KB)
[v2] Sun, 3 Nov 2024 14:51:07 UTC (542 KB)
Current browse context:
quant-ph
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.