Computer Science > Machine Learning
[Submitted on 12 Oct 2024]
Title:Fusion Matrix Prompt Enhanced Self-Attention Spatial-Temporal Interactive Traffic Forecasting Framework
View PDF HTML (experimental)Abstract:Recently, spatial-temporal forecasting technology has been rapidly developed due to the increasing demand for traffic management and travel planning. However, existing traffic forecasting models still face the following limitations. On one hand, most previous studies either focus too much on real-world geographic information, neglecting the potential traffic correlation between different regions, or overlook geographical position and only model the traffic flow relationship. On the other hand, the importance of different time slices is ignored in time modeling. Therefore, we propose a Fusion Matrix Prompt Enhanced Self-Attention Spatial-Temporal Interactive Traffic Forecasting Framework (FMPESTF), which is composed of spatial and temporal modules for down-sampling traffic data. The network is designed to establish a traffic fusion matrix considering spatial-temporal heterogeneity as a query to reconstruct a data-driven dynamic traffic data structure, which accurately reveal the flow relationship of nodes in the traffic network. In addition, we introduce attention mechanism in time modeling, and design hierarchical spatial-temporal interactive learning to help the model adapt to various traffic scenarios. Through extensive experimental on six real-world traffic datasets, our method is significantly superior to other baseline models, demonstrating its efficiency and accuracy in dealing with traffic forecasting problems.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.