Computer Science > Human-Computer Interaction
[Submitted on 7 Oct 2024]
Title:Skin Controlled Electronic and Neuromorphic Tattoos
View PDFAbstract:Wearable human activity sensors developed in the past decade show a distinct trend of becoming thinner and more imperceptible while retaining their electrical qualities, with graphene e-tattoos, as the ultimate example. A persistent challenge in modern wearables, however, is signal degradation due to the distance between the sensor's recording site and the signal transmission medium. To address this, we propose here to directly utilize human skin as a signal transmission medium as well as using low-cost gel electrodes for rapid probing of 2D transistor-based wearables. We demonstrate that the hypodermis layer of the skin can effectively serve as an electrolyte, enabling electrical potential application to semiconducting films made from graphene and other 2D materials placed on top of the skin. Graphene transistor tattoos, when biased through the body, exhibit high charge carrier mobility (up to 6500 2V-1s-1), with MoS2 and PtSe2 transistors showing mobilities up to 30 cm2V-1s-1 and 1 cm2V-1s-1, respectively. Finally, by introducing a layer of Nafion to the device structure, we observed neuromorphic functionality, transforming these e-tattoos into neuromorphic bioelectronic devices controlled through the skin itself. The neuromorphic bioelectronic tattoos have the potential for developing self-aware and stand-alone smart wearables, crucial for understanding and improving overall human performance.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.