Quantum Physics
[Submitted on 5 Oct 2024]
Title:Lazy Qubit Reordering for Accelerating Parallel State-Vector-based Quantum Circuit Simulation
View PDF HTML (experimental)Abstract:This paper proposes two quantum operation scheduling methods for accelerating parallel state-vector-based quantum circuit simulation using multiple graphics processing units (GPUs). The proposed methods reduce all-to-all communication caused by qubit reordering (QR), which can dominate the overhead of parallel simulation. Our approach eliminates redundant QRs by introducing intentional delays in QR communications such that multiple QRs can be aggregated into a single QR. The delays are carefully introduced based on the principles of time-space tiling, or a cache optimization technique for classical computers, which we use to arrange the execution order of quantum operations. Moreover, we present an extended scheduling method for the hierarchical interconnection of GPU cluster systems to avoid slow inter-node communication. We develop these methods tailored for two primary procedures in variational quantum eigensolver (VQE) simulation: quantum state update (QSU) and expectation value computation (EVC). Experimental validation on 32-GPU executions demonstrates acceleration in QSU and EVC -- up to 54$\times$ and 606$\times$, respectively -- compared to existing methods. Moreover, our extended scheduling method further reduced communication time by up to 15\% in a two-layered interconnected cluster system. Our approach is useful for any quantum circuit simulations, including QSU and/or EVC.
Current browse context:
quant-ph
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.