Computer Science > Machine Learning
[Submitted on 4 Oct 2024 (v1), last revised 24 Feb 2025 (this version, v2)]
Title:HyResPINNs: Hybrid Residual Networks for Adaptive Neural and RBF Integration in Solving PDEs
View PDF HTML (experimental)Abstract:Physics-informed neural networks (PINNs) have emerged as a powerful approach for solving partial differential equations (PDEs) by training neural networks with loss functions that incorporate physical constraints. In this work, we introduce HyResPINNs, a novel class of PINNs featuring adaptive hybrid residual blocks that integrate standard neural networks and radial basis function (RBF) networks. A distinguishing characteristic of HyResPINNs is the use of adaptive combination parameters within each residual block, enabling dynamic weighting of the neural and RBF network contributions. Our empirical evaluation of a diverse set of challenging PDE problems demonstrates that HyResPINNs consistently achieve superior accuracy to baseline methods. These results highlight the potential of HyResPINNs to bridge the gap between classical numerical methods and modern machine learning-based solvers, paving the way for more robust and adaptive approaches to physics-informed modeling.
Submission history
From: Madison Cooley [view email][v1] Fri, 4 Oct 2024 16:21:14 UTC (2,847 KB)
[v2] Mon, 24 Feb 2025 16:15:11 UTC (412 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.