Mathematics > Numerical Analysis
[Submitted on 3 Oct 2024]
Title:Boundary treatment for high-order IMEX Runge-Kutta local discontinuous Galerkin schemes for multidimensional nonlinear parabolic PDEs
View PDF HTML (experimental)Abstract:In this article, we propose novel boundary treatment algorithms to avoid order reduction when implicit-explicit Runge-Kutta time discretization is used for solving convection-diffusion-reaction problems with time-dependent Di\-richlet boundary conditions. We consider Cartesian meshes and PDEs with stiff terms coming from the diffusive parts of the PDE. The algorithms treat boundary values at the implicit-explicit internal stages in the same way as the interior points. The boundary treatment strategy is designed to work with multidimensional problems with possible nonlinear advection and source terms. The proposed methods recover the designed order of convergence by numerical verification. For the spatial discretization, in this work, we consider Local Discontinuous Galerkin methods, although the developed boundary treatment algorithms can operate with other discretization schemes in space, such as Finite Differences, Finite Elements or Finite Volumes.
Submission history
From: José Antonio García Rodríguez [view email][v1] Thu, 3 Oct 2024 19:23:28 UTC (1,718 KB)
Current browse context:
math.NA
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.