Computer Science > Computers and Society
[Submitted on 18 Sep 2024]
Title:TaCIE: Enhancing Instruction Comprehension in Large Language Models through Task-Centred Instruction Evolution
View PDF HTML (experimental)Abstract:Large Language Models (LLMs) require precise alignment with complex instructions to optimize their performance in real-world applications. As the demand for refined instruction tuning data increases, traditional methods that evolve simple seed instructions often struggle to effectively enhance complexity or manage difficulty scaling across various domains. Our innovative approach, Task-Centered Instruction Evolution (TaCIE), addresses these shortcomings by redefining instruction evolution from merely evolving seed instructions to a more dynamic and comprehensive combination of elements. TaCIE starts by deconstructing complex instructions into their fundamental components. It then generates and integrates new elements with the original ones, reassembling them into more sophisticated instructions that progressively increase in difficulty, diversity, and complexity. Applied across multiple domains, LLMs fine-tuned with these evolved instructions have substantially outperformed those tuned with conventional methods, marking a significant advancement in instruction-based model fine-tuning.
Current browse context:
cs.CY
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.