Computer Science > Computer Vision and Pattern Recognition
[Submitted on 29 Sep 2024]
Title:BiPC: Bidirectional Probability Calibration for Unsupervised Domain Adaption
View PDF HTML (experimental)Abstract:Unsupervised Domain Adaptation (UDA) leverages a labeled source domain to solve tasks in an unlabeled target domain. While Transformer-based methods have shown promise in UDA, their application is limited to plain Transformers, excluding Convolutional Neural Networks (CNNs) and hierarchical Transformers. To address this issues, we propose Bidirectional Probability Calibration (BiPC) from a probability space perspective. We demonstrate that the probability outputs from a pre-trained head, after extensive pre-training, are robust against domain gaps and can adjust the probability distribution of the task head. Moreover, the task head can enhance the pre-trained head during adaptation training, improving model performance through bidirectional complementation. Technically, we introduce Calibrated Probability Alignment (CPA) to adjust the pre-trained head's probabilities, such as those from an ImageNet-1k pre-trained classifier. Additionally, we design a Calibrated Gini Impurity (CGI) loss to refine the task head, with calibrated coefficients learned from the pre-trained classifier. BiPC is a simple yet effective method applicable to various networks, including CNNs and Transformers. Experimental results demonstrate its remarkable performance across multiple UDA tasks. Our code will be available at: this https URL.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.