Computer Science > Computer Vision and Pattern Recognition
[Submitted on 25 Sep 2024]
Title:The Role of Language Models in Modern Healthcare: A Comprehensive Review
View PDF HTML (experimental)Abstract:The application of large language models (LLMs) in healthcare has gained significant attention due to their ability to process complex medical data and provide insights for clinical decision-making. These models have demonstrated substantial capabilities in understanding and generating natural language, which is crucial for medical documentation, diagnostics, and patient interaction. This review examines the trajectory of language models from their early stages to the current state-of-the-art LLMs, highlighting their strengths in healthcare applications and discussing challenges such as data privacy, bias, and ethical considerations. The potential of LLMs to enhance healthcare delivery is explored, alongside the necessary steps to ensure their ethical and effective integration into medical practice.
Current browse context:
cs.CV
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.