Computer Science > Discrete Mathematics
[Submitted on 23 Sep 2024]
Title:On the periodic decompositions of multidimensional configurations
View PDF HTML (experimental)Abstract:We consider $d$-dimensional configurations, that is, colorings of the $d$-dimensional integer grid $\mathbb{Z}^d$ with finitely many colors. Moreover, we interpret the colors as integers so that configurations are functions $\mathbb{Z}^d \to \mathbb{Z}$ of finite range. We say that such function is $k$-periodic if it is invariant under translations in $k$ linearly independent directions. It is known that if a configuration has a non-trivial annihilator, that is, if some non-trivial linear combination of its translations is the zero function, then it is a sum of finitely many periodic functions. This result is known as the periodic decomposition theorem. We prove two different improvements of it. The first improvement gives a characterization on annihilators of a configuration to guarantee the $k$-periodicity of the functions in its periodic decomposition -- for any $k$. The periodic decomposition theorem is then a special case of this result with $k=1$. The second improvement concerns so called sparse configurations for which the number of non-zero values in patterns grows at most linearly with respect to the diameter of the pattern. We prove that a sparse configuration with a non-trivial annihilator is a sum of finitely many periodic fibers where a fiber means a function whose non-zero values lie on a unique line.
Current browse context:
cs.DM
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.